Return to search

Antibacterial polyurethane nanocomposites for urinary devices

Hospital-acquired infections are a significant contributor to clinically-related morbidity and mortality. The majority of these infections are associated with the use of invasive medical devices, where urinary catheters account for ~36% of cases. Current preventative strategies have shown short-term (<7 days) success, however their long-term (>28 days) efficacy is unclear. This thesis explores the use of solution-cast polyurethane nanocomposite (PUNC) materials for antimicrobial drug delivery in urinary applications. It is hypothesised that the enhanced barrier properties of PUNCs, afforded by the incorporation of well-dispersed nanoinclusions, would allow for the sustained release of an antimicrobial agent. The objectives of this research were to investigate the antibacterial, mechanical and barrier properties of PUNCs incorporating various silicates modified using antimicrobials, hypothesised to also act as dispersing agents. Organically modified silicates (OMS) were prepared at 110%, 200% and 300% cationic exchange capacity (CEC) using the biocide, chlorhexidine diacetate (CHX), which was hypothesised to perform the dual functions; dispersant and antibacterial agent. Resulting OMS were incorporated at 1wt% and 5wt% loadings into a PU matrix to produce PUNCs; PEU-CHX1.1MMT, PEU-CHX2.0MMT, and PEU-CHX3.0MMT, respectively. CHX performed well as a dispersant, producing intercalated to partially exfoliated PUNCS. Antibacterial activity was dependent on OMS type and loading. PEU-CHX1.1MMT materials had poor antibacterial properties, but the addition of free CHX into the materials significantly improved their efficacy, demonstrating long-term sterility in an in vitro urinary tract (UT) model. PEU-CHX2.0MMT and PEU-CHX3.0MMT at 5wt% OMS loadings had partially exfoliated structures and excellent antibacterial activity. Cytotoxicity was evident in all materials, although to a lesser extent in the latter. Overall, intermediate OMS loadings of CHX2.0MMT would be expected to produce PUNCs with favourable antibacterial activity and cytocompatibility. PUNC drug-release profiles demonstrated sustained release compared to pristine PU, indicative of enhanced barrier properties. Their ultimate tensile properties decreased with increased OMS loading or addition of free CHX.Higher cationic-exchanged OMS caused significant reductions in strain. Young's modulus increased in response to higher %CEC OMS and loading. PUNCs show promise as antibacterial biomaterials for long-term urinary applications, where antimicrobial release and mechanical properties can be modulated through organic modification and OMS loading.

Identiferoai:union.ndltd.org:ADTP/242352
Date January 2009
CreatorsFong, Nicole Wei Shi, Graduate School of Biomedical Engineering, Faculty of Engineering, UNSW
PublisherPublisher:University of New South Wales. Graduate School of Biomedical Engineering
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
Rightshttp://unsworks.unsw.edu.au/copyright, http://unsworks.unsw.edu.au/copyright

Page generated in 0.0022 seconds