Return to search

Preparation of Polysulfone-Silica Nanoparticle Ultrafiltration Membranes with High Permeation and Antifouling Properties

Membrane-based filtration and separation processes are widely used in various fields, such as for clean drinking water, food, dairy industry, medical, biotechnology, and environmental applications. Providing clean and safe drinking water has been regarded as one of the global biggest challenges because of increasing world population, impacts of climate changes, increased wastewater production, and increased contamination of surface and groundwater. The most important technologies contributing substantially in this field are based on pressure-driven membrane technologies such as microfiltration, ultrafiltration, nanofiltration, and reverse osmosis.
Recently, in situ synthesis of nanoparticles based on molecular level design and tailoring in the membrane matrix have been reported to prepare next generation nano-enhanced membranes. In this work similar technique was utilized to construct PSF-Silica nanocomposite membranes in which hydrolysis and condensation of silica precursor (TEOS, APTES, and TPAPS) and phase inversion of polymer film was achieved simultaneously in one step under acidic condition. This unique process has led to the formation of extremely small silica nanoparticles with high dispersion in every region of the membrane. Such type of distribution of silica nanoparticles is very difficult to achieve using conventional silica nanoparticle blending with polymer solution. The prepared membranes were extensively characterized for their morphology, surface properties, nanoparticle distribution, fouling and permeation properties. Finally, the membranes were tested with rejection experiments with protein and dye solutions to assess their usefulness for water filtration and separation applications.
The silica nanoparticles were mostly generated during the phase inversion under acidic condition by hydrolysis and polycondensation reaction of silica precursors mixed with PSF solution. The properties and structure of membranes were characterized by different analytic and physicochemical techniques. The prepared membranes exhibit an asymmetric nature with a dense skin layer, followed by finger-like porous structure at the bottom. The microscopic and elemental analysis confirmed the presence and homogeneous distribution of nanoscopic small silica particles throughout the membrane matrix. Hydrophilic SiO2, SiO2-NH2, SO2-NH-SO3H nanoparticles were respectively formed in situ within PSF membrane matrix during the phase inversion under acidic condition by hydrolysis and polycondensation reaction of corresponding silica precursors mixed with PSF solution. Because the nanosize and good distribution of the pores, the presence and well distribution of silica nanoparticles, the presence and exposure of the hydrophilic charged functional groups form a hydrate layer on the membranes and provide hydration repulsion and electrostatic repulsion against solutes from feed under aqueous medium, the PSF-TEOS, PSF-APTES, PSF-TPAPS membranes respectively with SiO2, SiO2-NH2, and SO2-NH-SO3H nanoparticles exhibited high hydrophilicity, stability, water permeation, rejection, and antifouling performance as compared to the neat PSF membrane for water purification application. The overall membrane properties were highly dependent on the concentration of the silica nanoparticles and can be tuned by adjusting the concentration of initial silica precursors during membrane formation. The low protein fouling, high water permeation, protein rejection, and flux recovery results make those membranes attractive for separation and filtration applications. Thus, the prepared membranes can be used in different applications ranging from separation of biomolecules, desalination/purification of water, and for other charge and size-based separation processes.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:30186
Date14 September 2018
CreatorsLi, Xiaojiao
ContributorsStamm, Manfred, Tripathi, Bijay, Technische Universität Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0024 seconds