In this work the potential of graphene-like particles for mechanical reinforcement is investigated. Different polymer processing methods are studied from traditional ones to more advanced techniques. The potential of graphene as a reinforcement for polymer composites is addressed as a result of polymer modifications and the morphology of the graphene like particles. First, a composites of polycarbonate (PC) and graphite nanoplatelets (GNP) are produced by a traditional melt-mixing method. The GNP composites present a low mechanical reinforcing efficiency which is believed to be due to a poor dispersion of the GNP and a weak interaction between the GNP and the matrix. Secondly, solution cast composites of polyvinyl alcohol (PVA) with very low loadings of graphene oxide (GO) are produced. The polymer morphology undergoes some modifications after the addition of GO. A strong increase of the Tg is observed after the addition of GO which is the result of a reduction in polymer mobility, while a dramatic increase of the mechanical properties is seen as well. Uni-axial drawing is applied in order to align the particles. No polymer modifications are observed between the drawn PVA and the drawn nanocomposites due to the strong alignment of the polymer chains during the drawing. Mechanical reinforcement is observed after addition of the GO showing real reinforcement. Finally, a more advanced processing method is investigated using spraying. The condition of spraying a layer of polymer and GO is studied. Finally a hierarchical composite of PVA - GO is produced by this spraying method. 150 bi-layers are deposited to create a film with improved mechanical properties at a loading of 5.4 wt.% GO. The Young’s modulus and strength of these films doubled or nearly doubled which is believed to be due to the high level of structural organization of the layered nanocomposite incorporating the 2D GO nanofiller, together with hydrogen bonding between the PVA and the GO sheets.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:667447 |
Date | January 2015 |
Creators | Sellam, Charline |
Publisher | Queen Mary, University of London |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://qmro.qmul.ac.uk/xmlui/handle/123456789/9000 |
Page generated in 0.0755 seconds