Optical trapping is an important tool for studying and manipulating nanoscale objects. Recent experiments have shown that subwavelength control of nanoparticles is possible by using patterned plasmonic nanostructures, rather than using a laser directly, to generate the electric fields necessary for particle trapping. In this thesis we present a theoretical model and experimental evidence for plasmonic optical trapping in nanoscale metal junctions. Further, we examine the use of the resultant devices as ultrasmall photodectors.
Electromigrated nanojunctions, or “nanogaps”, have a well-established plasmon resonance in the near-IR, leading to electric field enhancements large enough for single-molecule sensitivity in Surface-Enhance Raman (SERS) measurements. While molecule-based devices have been carefully studied, optically and electrically probing individual quantum dots in nanoscale metal junctions remains relatively unexplored. Plasmon-based optical trapping of quantum dots into prefabricated structures could allow for inexpensive, scalable luminescent devices which are fully integrable into established silicon-based fabrication techniques. Additionally, these metal-nanocrystal-metal structures are ideal candidates to study optoelectronics in ultrasmall nanocrystals-based structures, as well as more exotic nanoscale phenomena such as blinking, plasmon-exciton interactions, and surface-enhanced fluorescence (SEF).
We present experimental data supporting plasmon-based optical trapping in the nanogap geometry, and a corresponding numerical model of the electric field-generated forces in the nanogap geometry. Further, we give proof-of-concept measurements of photoconductance in the resultant quantum dot-based devices, as well as challenges and improvements moving forward.
Identifer | oai:union.ndltd.org:RICE/oai:scholarship.rice.edu:1911/71295 |
Date | 05 June 2013 |
Creators | Evans, Kenneth |
Contributors | Natelson, Douglas |
Source Sets | Rice University |
Language | English |
Detected Language | English |
Type | thesis, text |
Format | application/pdf |
Page generated in 0.0018 seconds