Return to search

Synthesis and Mechanical Properties of Bulk Quantities of Electrodeposited Nanocrystalline Materials

Nanocrystalline materials have generated immense scientific interest, primarily due to observations of significantly enhanced strength and hardness resulting from Hall-Petch grain size strengthening into the nano-regime. Unfortunately, however, most previous studies have been unable to present material strength measurements using established tensile tests because the most commonly accepted tensile test protocols call for specimen geometries that exceeded the capabilities of most nanocrystalline material synthesis processes. This has led to the development of non-standard mechanical test methodologies for the evaluation of miniature specimens, and/or the persistent use of hardness indentation as a proxy for tensile testing. This study explored why such alternative approaches can be misleading and revealed how reliable tensile ductility measurements and material strength information from hardness indentation may be obtained.

To do so, an electrodeposition-based synthesis method to produce artifact-reduced specimens large enough for testing in accordance with ASTM E8 was developed. A large number of 161 samples were produced, tested, and the resultant data evaluated using Weibull statistical analysis. It was found that the impact of electroforming process control on both the absolute value and variability of achievable tensile elongation was strong. Tensile necking was found to obey similar processing quality and geometrical dependencies as in conventional engineering metals. However, unlike conventional engineering metals, intrinsic ductility (as measured by maximum uniform plastic strain) was unexpectedly observed to be independent of microstructure over the grain size range 10-80nm. This indicated that the underlying physical processes of grain boundary-mediated damage development are strain-oriented phenomena that can be best defined by a critical plastic strain regardless of the strength of the material as a whole.

It was further shown that the HV = 3•σUTS expression is a reliable predictor of the relationship between hardness and strength for electrodeposited nanocrystalline materials, provided the material is ductile enough to sustain tensile deformation until the onset of necking instability. The widely used relationship HV = 3•σY was found to be inapplicable to this class of materials owing to the fact that they do not deform in an “ideally plastic” manner and instead exhibit plastic deformation that is characteristic of strain hardening behaviour.

Identiferoai:union.ndltd.org:TORONTO/oai:tspace.library.utoronto.ca:1807/32670
Date20 August 2012
CreatorsBrooks, Iain
ContributorsErb, Uwe
Source SetsUniversity of Toronto
Languageen_ca
Detected LanguageEnglish
TypeThesis

Page generated in 0.0019 seconds