Return to search

Zeolitic imidazolate framework-71 nanocrystals and a novel SOD-type polymorph: solution mediated phase transformations, phase selection via coordination modulation and a density functional theory derived energy landscape

We report a rapid additive-free synthesis of nanocrystals (NCs) of RHO-type ZIF-71 (1) of composition [Zn(dcim)₂] (dcim = 4,5-dichloroimidazolate) in 1-propanol as solvent at room temperature. NC-1 has a size of 30–60 nm and exhibits permanent microporosity with a surface area (SBET = 970 m² g−¹) comparable to that of microcrystalline material. When kept under the mother solution NC-1 undergoes transformation into a novel SOD-type polymorph (2), which in turn converts into known ZIF-72 (3) with lcs topology. It is shown that microcrystals (MCs) of 2 can be favourably synthesised using 1-methylimidazole as a coordination modulator. NC-2 with size <200 nm was prepared using NC-ZIF-8 as a template with SOD topology in a solvent assisted ligand exchange-related process. DFT-assisted Rietveld analysis of powder XRD data revealed that novel polymorph 2 possesses an unusual SOD framework conformation. 2 was further characterised with regard to microporosity (SBET = 597 m² g−¹) and thermal as well as chemical stability. DFT calculations were performed to search for further potentially existing but not-yet synthesised polymorphs in the [Zn(dcim)₂] system.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:36102
Date27 November 2019
CreatorsSchweinefuß, Maria E., Springer, Sergej, Baburin, Igor A., Hikov, Todor, Huber, Klaus, Leoni, Stefano, Wiebcke, Michael
PublisherRoyal Society of Chemistry
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, doc-type:article, info:eu-repo/semantics/article, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess
Relation1364-5447, 10.1039/c3dt52992d, info:eu-repo/grantAgreement/Deutsche Forschungsgemeinschaft/Crystalline Non-equilibrium Phases/1415/

Page generated in 0.0013 seconds