ZnO is one of the most important materials for electronics, optoelectronics, piezoelectricity and optics. With a wide band gap of 3.37eV and an exiton binding energy of 60meV, ZnO 1D nanostructures exhibit promising properties in a lot of optical device applications. It is also an important piezoelectric material and has applications in a new category of nanodevices, nano-piezotronics. Demonstrated prototype of devices includes nanogenerators, piezoelectric-FET, and a series of evolutive devices based on the concept of nanogenerator. This is based on working principle of a semiconductor and piezoelectric coupled property.
This thesis is about the growth, characterization and device fabrication of ZnO nanowires and nanobelts for sensors and UV detectors. First, the fundamental synthesis of ZnO nanostructurs is investigated, particularly polar surface dominated nanostructues, to illustrate the unique growth configurations of ZnO. Detail study in this part includes nanobelts, nanorings, nanocombs, nanonetworks, and nanodiskettes synthesis. Important factors in driving the nanostructure synthesis mechanism are analyzed, such as the chemical activities of different surface of ZnO and the polar surface dominated effects. Then, the devices fabricated methods using individual nanowires/nanobelts and their electrical transport properties were carefully characterized. In this part, dominant factors which are critical for nanobelt device performance are investigated, such as the contact properties, interface effects, and durability testing. Also, a metal doping method is studied to explore the controlling and modification of nanowire electric and optical properties. Further more, I will present the surface functionalization of nanobelt for largely improving its electrical, optoelectronic and chemical performance. Surface functionalization of nanobelts is proven to be an effective method in enhancing the semiconductor and metal contact. Piezoelectric field-effect transistors will be demonstrated as a powerful approach as chemical sensors. Finally, a technique is illustrated for functionalizing the surfaces of ZnO nanobelts for enhancing its UV sensitivity by over five orders of magnitude. This demonstrates an effective approach for fabricatiing ultrasensitive UV detectors. The research results presented in this thesis have made great contribution to the growth, device fabrication and novel applications of ZnO nanostructures for photonics, optoelectronics and sensors.
Identifer | oai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/19744 |
Date | 29 October 2007 |
Creators | Lao, Changshi |
Publisher | Georgia Institute of Technology |
Source Sets | Georgia Tech Electronic Thesis and Dissertation Archive |
Detected Language | English |
Type | Dissertation |
Page generated in 0.0019 seconds