Nanoindentation techniques have not been standardized for use on bone tissues, making comparison of bone material properties obtained via nanoindentation across studies difficult and unreliable. This study determined a set of optimal parameter values for thermal drift correction time, dwell time, and loading rate that can be used to obtain accurate and repeatable material properties from human femoral trabecular bone through experimentation and statistical analysis. All testing was conducted using a single nanoindenter on a single trabeculae, with the assumption that material properties within the individual trabeculae were internally consistent. Parameters not of interest during this study, such as ambient temperature, maximum load, and maximum indentation depth were held constant throughout all experiments. Elastic modulus and hardness data were calculated using the Oliver-Pharr technique. The optimal values for these parameters are as follows: 150 seconds for thermal drift correction time, 30 to 60 seconds for dwell time, and 0.4 to 0.8 mN/s for loading rate.
Identifer | oai:union.ndltd.org:CALPOLY/oai:digitalcommons.calpoly.edu:theses-3732 |
Date | 01 October 2020 |
Creators | Kmak, Stephen Matthew |
Publisher | DigitalCommons@CalPoly |
Source Sets | California Polytechnic State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Master's Theses |
Page generated in 0.0019 seconds