Submitted by Automa??o e Estat?stica (sst@bczm.ufrn.br) on 2016-08-09T22:54:12Z
No. of bitstreams: 1
IgorMarcelGomesAlmeida_TESE.pdf: 4250609 bytes, checksum: aed113969f68ea316e77e9cb48308665 (MD5) / Approved for entry into archive by Arlan Eloi Leite Silva (eloihistoriador@yahoo.com.br) on 2016-08-11T00:23:13Z (GMT) No. of bitstreams: 1
IgorMarcelGomesAlmeida_TESE.pdf: 4250609 bytes, checksum: aed113969f68ea316e77e9cb48308665 (MD5) / Made available in DSpace on 2016-08-11T00:23:13Z (GMT). No. of bitstreams: 1
IgorMarcelGomesAlmeida_TESE.pdf: 4250609 bytes, checksum: aed113969f68ea316e77e9cb48308665 (MD5)
Previous issue date: 2015-12-15 / Conselho Nacional de Desenvolvimento Cient?fico e Tecnol?gico (CNPq) / A performance termodin?mica de um sistema de refrigera??o pode ser melhorada se a redu??o no trabalho de compress?o for obtida por uma determinada t?cnica, para uma taxa de remo??o de calor espec?fica. Este trabalho analisa o efeito da dispers?o, em pequena concentra??o, de nanopart?culas de Al2O3 (50 nm de d?metro) no lubrificante baseado em ?leo mineral sobre: a viscosidade, condutividade t?rmica e caracter?sticas de lubrifica??o, bem como na performance global (baseada na segunda lei da termodin?mica) do sistema de refrigera??o utilizando R134a ou R600a como refrigerantes. O estudo analisou as influ?ncias das vari?veis: i) carga de refrigerante (100, 110, 120 e 130 g), ii) velocidade de rota??o do for?ador do condensador (800 e 1100 RPM) e iii) concentra??o de nanopart?culas (0,1 e 0,5 g/L) sobre a performance do sistema utilizando o m?todo Taguchi numa matriz de ensaios L8, tendo como crit?rio ?menor irreversibilidade ? melhor?. Foram realizados ensaios de abaixamento de temperatura e ciclagem conforme normas NBR 12866 e NBR 12869, respectivamente, para avaliar os par?metros operacionais de: porcentagem de funcionamento, n?mero de ciclos por hora, press?es de suc??o e descarga, temperatura do c?rter do compressor, temperatura de evapora??o, temperatura de condensa??o, consumo de energia at? set-point, consumo total de energia e pot?ncia consumida. Para fins de avalia??o das caracter?sticas de lubrifica??o dos nanolubrificantes utilizados no compressor, foram realizados ensaios acelerados em uma bancada de HFRR. Em cada ensaio de 60 minutos, lubrificado por um nanolubrificante com determinada concentra??o (0; 0,1 e 0,5 g/L), com tr?s repeti??es, uma esfera (di?metro 6,00?0,05 mm, Ra 0,05?0,005 ?m, a?o AISI 52100, E = 210 GPa, HRC 62?4) deslizava sobre um disco plano (ferro fundido cinzento FC200, Ra < 0,5?0,005 ?m) em um movimento alternado com amplitude de 1 mm, frequ?ncia de 20 Hz e carga normal de 10 N. Os sinais de coeficiente de atrito e forma??o de filme foram registrados por sensores acoplados ao sistema HFRR. Observou-se uma tend?ncia pouco comentada na literatura: a de redu??o da viscosidade do nanolubrificante com a presen?a de baixas concentra??es de nanopart?culas. Constatou-se a tend?ncia dominante na literatura, aumento da condutividade t?rmica com o aumento da fra??o em massa de nanopart?culas no fluido base. Outro fato constatado ? o crescimento expressivo da condutividade t?rmica do nanolubrificante com o aumento da temperatura. A velocidade de rota??o do ventilador do condensador ? o par?metro de maior influ?ncia (46,192 %) na performance termodin?mica do refrigerador, seguido da carga de R600a (38,606 %). A concentra??o de nanopart?culas de Al2O3 no lubrificante desempenha a menor influ?ncia na performance do sistema, com 12,44%. Os resultados de consumo de energia indicam que a adi??o de nanopart?culas ao lubrificante (0,5 g/l), juntamente com o R600a, permitem reduzir o consumo do refrigerador em 25,9%, com rela??o ao R134a e lubrificante POE. Somente a adi??o de nanopart?culas de Al2O3 ao lubrificante resulta em redu??o de cerca de 5% no consumo. / The thermodynamic performance of a refrigeration system can be improved by reducing the compression work by a particular technique for a specific heat removal rate. This study examines the effect of small concentrations of Al2O3 (50 nm) nanoparticles dispersion in the mineral oil based lubricant on the: viscosity, thermal conductivity, and lubrication characteristics as well as the overall performance (based on the Second Law of Thermodynamics) of the refrigerating system using R134a or R600a as refrigerants. The study looked at the influences of variables: i) refrigerant charge (100, 110, 120 and 130 g), ii) rotational speed of the condenser blower (800 and 1100 RPM) and iii) nanoparticle concentration (0.1 and 0.5 g/l) on the system performance based on the Taguchi method in a matrix of L8 trials with the criterion "small irreversibility is better?. They were carried pulldown and cycling tests according to NBR 12866 and NBR 12869, respectively, to evaluate the operational parameters: on-time ratio, cycles per hour, suction and discharge pressures, oil sump temperature, evaporation and condensation temperatures, energy consumption at the set-point, total energy consumption and compressor power. In order to evaluate the nanolubricant characteristics, accelerated tests were performed in a HFRR bench. In each 60 minutes test with nanolubricants at a certain concentration (0, 0.1 and 0.5 g/l), with three replications, the sphere (diameter 6.00 ? 0.05 mm, Ra 0.05 ? 0.005 um, AISI 52100 steel, E = 210 GPa, HRC 62 ? 4) sliding on a flat plate (cast iron FC200, Ra <0.5 ? 0.005 um) in a reciprocating motion with amplitude of 1 mm, frequency 20 Hz and a normal load of 1,96 N. The friction coefficient signals were recorded by sensors coupled to the HFRR system. There was a trend commented bit in the literature: a nanolubricant viscosity reduction at the low nanoparticles concentrations. It was found the dominant trend in the literature: increased thermal conductivity with increasing nanoparticles mass fraction in the base fluid. Another fact observed is the significant thermal conductivity growth of nanolubricant with increasing temperature. The condenser fan rotational speed is the most influential parameter (46.192%) in the refrigerator performance, followed by R600a charge (38.606%). The Al2O3 nanoparticles concentration in the lubricant plays a minor influence on system performance, with 12.44%. The results of power consumption indicates that the nanoparticles addition in the lubricant (0.1 g/L), together with R600a, the refrigerator consumption is reduced of 22% with respect to R134a and POE lubricant. Only the Al2O3 nanoparticles addition in the lubricant results in a consumption reduction of about 5%.
Identifer | oai:union.ndltd.org:IBICT/oai:repositorio.ufrn.br:123456789/21142 |
Date | 15 December 2015 |
Creators | Almeida, Igor Marcel Gomes |
Contributors | 22174443449, http://lattes.cnpq.br/8673332414572221, Fontes, Francisco de Assis Oliveira, 20300190468, http://lattes.cnpq.br/9043538628554844, Ramalho, Eduardo Galv?o, 03605359418, Ramalho, Eduardo Galv?o, Bandarra Filho, Enio Pedone, 19152090809, http://lattes.cnpq.br/8157552858330455, Medeiros, Jo?o Telesforo N?brega de, Barbosa, Cleiton Rubens Formiga |
Publisher | Universidade Federal do Rio Grande do Norte, PROGRAMA DE P?S-GRADUA??O EM ENGENHARIA MEC?NICA, UFRN, Brasil |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Source | reponame:Repositório Institucional da UFRN, instname:Universidade Federal do Rio Grande do Norte, instacron:UFRN |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0037 seconds