Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2014-08-01T13:01:53Z
No. of bitstreams: 2
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Dissertacao_Anderson Costa da Silva.pdf: 1776105 bytes, checksum: e9ddfbafe65f7344ec61ee2426b1f505 (MD5) / Made available in DSpace on 2014-08-01T13:01:53Z (GMT). No. of bitstreams: 2
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Dissertacao_Anderson Costa da Silva.pdf: 1776105 bytes, checksum: e9ddfbafe65f7344ec61ee2426b1f505 (MD5)
Previous issue date: 2010 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this work we investigated the internalization process of magnetite nanoparticles,
surface coated with dextran, by mice tumour cells of Sarcoma 180 (S180) through the tech-
niques of vibrating sample magnetometer (VSM) and static magnetic birefringence (SMB).
The magnetic fluid sample, stable in physiological conditions, was prepared by the coprecip-
itation method. The growth of nanoparticles occurred in conjunction with the nanoparticle
surface coating process by dextran. The crystal structure was confirmed by X-ray diffraction.
The nanoparticles were characterized by high resolution transmission electronic microscopy.
The Sturges method was used to obtain the polydispersity in diameter, which was fitted by
a lognormal size distribution obtaining a modal diameter of 5.5 ± 0.1 nm and dispersity of
0.18 ± 0.02.The mice tumour cell sarcoma 180 was obtained using protocol established by the
American Type Culture Collection (ATCC, Rockville, MD, USA). Studies of cytotoxicity, using
the MTT method, were obtained for a nanoparticle volumetric fraction of φ = 0.00065 after
one and five hours of exposure of cells S180 to the nanoparticles. In particular, we found a
cellular viability of 87 ± 11 % after one hour of exposure proving that there was no appreciable
cell death in the time interval in which the measurements of MAV and BME were performed.
Magnetization measurements were performed to obtain the volume fraction of nanoparticles.
Tests regarding the effect of centrifugation of nanoparticles suspended in cell culture medium
RPMI 1640 showed a extremely low sedimentation of magnetic nanoparticles. A procedure,
using a acceleration of 260×g for 10 minutes, was used to separate cells containing internalized
nanoparticles from nanoparticles suspended in RPMI 1640. Measurements of magnetization
of S180 cells containing nanoparticles were performed in a wide range of exposure time (100
iv
minutes). Between 10 and 70 minutes the amount of nanoparticles in mass unit increased from
52 ± 20 pg/cell to 110 ± 15 pg/cell. Indeed magnetometry data indicate that the process of
internalization had achieved saturation between 30 to 40 minutes.
Magneto-optical technique of SMB was also used to investigate the process of inter-
nalization of nanoparticles. Firstly, SMB measurements were performed in control samples
consisting of magnetic nanoparticles suspended in RPMI 1640. We investigated the effects of
nanoparticle concentration and aging time (related to the dynamics of nanoparticle agglom-
eration). In particular, the average size of the agglomerate (Q), associated with the number
of nanoparticles forming a linear chain, remained basically constant, Q = 4.8 ± 0.2 for a full-
time of 70 minutes. Magnetic birefringence saturation data also remained stable in this time
interval. Additionally, analysis of the measurements of SMB were also used to estimate the
thickness of the coating layer (dextran), from which we found 1.70 ± 0.02 nm. Unlike VSM
data, SMB measurements were obtained on samples containing both S180 cells and magnetic
nanoparticles inside the RPMI medium 1640. Data were obtained in a wide range of time
(120 min.). Initially it was observed that the SMB signal decreases in a time range and then
increases again (between 30-40 min.). The fit of the experimental data indicate that the mag-
netic birefringence saturation (∆ns) decreases in the first 30 minutes and then increases again
smoothly, while the average size of the cluster has the opposite behavior, i.e. increases in the
first 30 minutes and then decreases. In particular, for a exposure time, t(exp), of 10 min. the
average size of the agglomerate (magnetic birefringence saturation) changed from 4.18 ± 0.04
(∆n(s) = 3.41 ± 0.02 ×1018 cm−3
min. As the birefringence saturation is proportional to the number of nanoparticles contribut-
ing to the magneto-optical signal one can conclude that the decrease in the magneto-optical
signal was due to the process of internalization of magnetic nanoparticles by cells S180. On the
other hand, the analysis of the aging time dependence of the mean size of the agglomerate also
suggests that the process of internalization occurs primarily with anisometric nanoparticles or
nanostructures forming small agglomerates. Finally, after reaching saturation of the process
) to 5.22 ± 0.08 (∆ns = 2.75 ± 0.02 ×1018 cm−3
) at texp = 30
v
of nanoparticle internalization we found a formation of small agglomerates in the RPMI 1640
medium, which is responsible for the increased intensity of the magneto-optical signal, as well
as the decrease of the mean size of the agglomerate for times longer than 30 minutes. / Neste trabalho investigamos o processo de internaliza ̧c ̃ao de nanopart ́ıculas magn ́eticas
de magnetita, recobertas com dextrana, por c ́elulas neopl ́asicas de Sarcoma 180 (S180), por
meio das t ́ecnicas de magnetometria de amostra vibrante (MAV) e birrefringˆencia magn ́etica
est ́atica (BME). A amostra de fluido magn ́etico, est ́avel em pH fisiol ́ogico, foi preparada pelo
m ́etodo de coprecipita ̧c ̃ao. O crescimento das nanopart ́ıculas ocorreu conjuntamente com o
recobrimento molecular por dextrana. A estrutura cristalina foi confirmada por difra ̧c ̃ao de
raios-X. As nanopart ́ıculas foram caracterizadas por microscopia eletrˆonica de transmiss ̃ao de
alta resolu ̧c ̃ao. O m ́etodo de Sturges foi utilizado para obter a polidispers ̃ao de diˆametros,
que foi ajustada por uma distribui ̧c ̃ao do tipo lognormal com diˆametro modal de 5, 5 ± 0, 1
nm e dispersidade 0, 18 ± 0, 02. A linhagem tumoral de camundongo Sarcoma 180 foi obtida
segundo protocolo estabelecido pela American Type Culture Collection (ATCC, Rockville, MD,
USA). Estudos de citotoxicidade, utilizando o m ́etodo MTT, foram feitos para uma fra ̧c ̃ao
volum ́etrica de nanopart ́ıculas de φ = 0, 00065 ap ́os uma e cinco horas de exposi ̧c ̃ao das c ́elulas
S180 as nanopart ́ıculas. Em particular, foi encontrada uma viabilidade celular de 87 ± 11%
ap ́os uma hora de exposi ̧c ̃ao provando que n ̃ao houve morte celular significativa no intervalo de
tempo em que as medidas de MAV e BME foram realizadas. Medidas de magnetiza ̧c ̃ao foram
feitas para obter a fra ̧c ̃ao volum ́etrica de nanopart ́ıculas. Testes do efeito de centrifuga ̧c ̃ao das
nanopart ́ıculas suspensas em meio de cultura celular RPMI 1640 revelaram uma sedimenta ̧c ̃ao
de nanopart ́ıculas magn ́eticas extremamente baixa. Um procedimento, utilizando acelera ̧c ̃ao de
260×g por 10 minutos, foi adotado para separar c ́elulas contendo nanoparticulas internalizadas
daquelas suspensas no meio RPMI 1640. Medidas de magnetiza ̧c ̃ao das c ́elulas S180 contendo
nanopart ́ıculas foram realizadas numa larga faixa de tempo de exposi ̧c ̃ao (100 minutos). Entre
10 e 70 minutos a quantidade de nanopart ́ıculas em unidade de massa passou de 52 ± 20
pg/c ́elula para 110 ± 15 pg/c ́elula. De fato os dados de magnetometria indicam que o processo
de internaliza ̧c ̃ao atingiu a satura ̧c ̃ao entre 30 a 40 minutos.
A t ́ecnica de magneto ́optica de BME tamb ́em foi utilizada para investigar o processo de
internaliza ̧c ̃ao das nanopart ́ıculas. Primeiramente, medidas de BME foram feitas em amostra
controle consistindo de nanopart ́ıculas magn ́eticas suspensas em meio RPMI 1640. Foram
investigados efeitos de concentra ̧c ̃ao de nanopart ́ıculas e de tempo de envelhecimento (associado
a dinˆamica de forma ̧c ̃ao de aglomerados). Em particular, o tamanho m ́edio do aglomerado (Q),
associado ao n ́umero de nanopart ́ıculas formando uma cadeia linear, manteve-se basicamente
constante, Q=4, 8 ± 0, 2, para uma faixa de tempo de 70 min. Dados de birrefringˆencia de
satura ̧c ̃ao tamb ́em permaneceram est ́aveis neste intervalo. Adicionalmente, medidas de BME
foram utilizadas para estimar a espessura da camada de cobertura (dextrana) sendo encontrado
1, 70 ± 0, 02 nm. Diferentemente dos dados de MAV, as medidas de BME foram feitas em
amostras contendo tanto c ́elulas S180 quanto nanopart ́ıculas no meio RPMI 1640. Dados foram
obtidos numa larga faixa de tempo (120 min.). Inicialmente observou-se que o sinal de BME
decresce num intervalo de tempo e depois volta a crescer (entre 30-40 min.). O ajuste dos dados
de BME indicam que a birrefringˆencia de satura ̧c ̃ao (∆ns) decresce nos primeiros 30 minutos
e depois volta a crescer de forma suave, enquanto o tamanho m ́edio do aglomerado possui um
comportamento oposto, ou seja cresce nos primeiros 30 minutos e depois volta a decrescer.
Em particular, no tempo de exposi ̧c ̃ao, texp, de 10 min. o tamanho m ́edio do aglomerado
(birrefringˆencia de satura ̧c ̃ao) variou de 4, 18±0, 04 (∆ns = 3, 41±0, 02 ×1018cm−3
0, 08 (∆ns = 2, 75 ± 0, 02 ×1018cm−3
́e proporcional ao n ́umero de nanopart ́ıculas contribuindo para o sinal magneto ́optico conclui-
se que o decr ́escimo do sinal magneto- ́optico foi decorrente do processo de internaliza ̧c ̃ao de
nanopart ́ıculas magn ́eticas pelas c ́elulas S180. Por sua vez, a an ́alise da dependˆencia temporal
do tamanho m ́edio do aglomerado tamb ́em sugere que o processo de internaliza ̧c ̃ao ocorre
) em texp=30 min. Como a birrefringˆencia de satura ̧c ̃ao
primeiramente com nanopart ́ıculas anisom ́etricas ou com nanoestruturas formando pequenos
aglomerados. Finalmente, ap ́os atingir a satura ̧c ̃ao no processo de internaliza ̧c ̃ao, observa-se
a forma ̧c ̃ao de pequenos aglomerados no meio RPMI 1640, que ́e o respons ́avel pelo aumento
da intensidade do sinal magneto- ́optico e diminui ̧c ̃ao do tamanho m ́edio do aglomerado para
tempos maiores que 30 minutos.
Identifer | oai:union.ndltd.org:IBICT/oai:repositorio.bc.ufg.br:tde/2874 |
Date | January 2010 |
Creators | Silva, Anderson Costa da |
Contributors | Bakuzis, Andris Figueiroa |
Publisher | Universidade Federal de Goiás, Programa DE Pós-graduação em Física (IF), UFG, Brasil, Instituto de Física - IF (RG) |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | application/pdf |
Source | reponame:Biblioteca Digital de Teses e Dissertações da UFG, instname:Universidade Federal de Goiás, instacron:UFG |
Rights | http://creativecommons.org/licenses/by-nc-nd/4.0/, info:eu-repo/semantics/openAccess |
Relation | 1102159680310750095, 600, 600, 600, 600, 306626487509624506, -8327146296503745929, 2075167498588264571, [1] N. Duran, L.H.C. Mattoso, and P.C. Morais. Nanotecnologia: Introdu ̧c ̃ao, caracteriza ̧c ̃ao de nanomateriais e exemplos de aplica ̧c ̃ao. Artliber, 2006. [2] S.E Khalafalla and G.W Reimers. US Patent 3 764 540. Technical report, USA, 1973. [3] C. Wang, S. Peng, R. Chan, and S.H. Sun. Synthesis of AuAg Alloy Nanoparticles from Core/Shell-Structured Ag/Au. SMALL, 5, 567–570, 2009. [4] K. Duttaa, S.t Mannab, and S.K. De. Optical and electrical characterizations of ZnS nanopar- ticles embedded in conducting polymer. Synthetic Metals, 159, 315–319, 2009. [5] J. C. Bacri, R. Perzynski, and D. Salin. Magnetic and thermal behaviour of γ − F e2O3 fine grains. J. Magn. Magn. Mater., 71, 246–254, 1988. [6] A.F.Bakuzis. Propriedades Magn ́eticas e Magneto- ́opticas de Fluidos Magn ́eticos. Tese de Doutorado, Universidade de Bras ́ılia, 2000. [7] J.W.M. Butle, T. Douglas, B. Witwer, Su-Chu Zhang, E. Strable, B.K. Lewis, H. Zywicke, B. Miller, P. van Gelderen, B.M. Moskowitz, I.D. Duncan, and J.A. Frank. Magneto- dendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nature Biotechnology, 19, 1141–1147, 2001. [8] P. L.; Tsang K. W. T.; Wang L.; Xu B. Gu, H. W.; Ho. Using biofunctional magnetic nanoparticles to capture vancomycin-resistent enterococci and other gram-positive bacteria at ultralow concentration. J. American Chemistry Society, 125, 1502–1503, 2003. [9] K.H.; Waldoefener N.; Teichgraeber U.; Pinkernelle J.; Neumann F.; Thiesen B.; von Deim- ling A.; Felix R. Jordan A.; Sholz R.; Maier-Hauff K.; Frank. The effect of thermotherapy using magnetic nanoparticles on rat malignant glioma. Journal of Neuro-Oncology, 78, 7–14, 2006. [10] R. Weissleder, K. Kelly, E. Yi Sun, T. Shtatland, and L. Josephson. Cell-specific targeting of nanoparticles by multivalent attachment of small molecules. Nature Biotechnology, 23, 1418–1423, 2005. 76 BIBLIOGRAFIA 77 [11] G. StoLLa andM. Bendszus. Imaging of Inflammation in the peripheral and central nervous system by magnetic resonance imaging. Neuroscience, 158, 1151–1160, 2009. [12] A. Ito, H. Honda, and T. Kobayashi. Cancer immunotherapy based on intracellular hyper- thermia using magnetite nanoparticles: a novel concept of heat controlled necrosis with heat shock protein expression. Cancer Immunol Immunother, 55, 320–328, 2006. [13] S. E. A. Gratton, P. A. Ropp, P. D. Pohlhaus, J. C. Luft, V. J. Madden, M. E. Napier, and J. M. DeSimone. The effect of particle design on cellular internalization pathways. Proceedings of the National Academic of Scienc, 105, 11613, 2008. [14] B. D. Chithrani and W. C. W. Chan. Elucidating the Mechanism of Cellular Uptake and Removal of Protein-Coated Gold Nanoparticles of Different Sizes and Shapes. Nano Letters, 7, 1542–1550, 2007. [15] Huang B.; Chen P.; Huang C.; Jung S.; Ma Y.; Wu T.; Chen J.; Wei K. Bioavailability of magnetic nanoparticles to the brain. J. Magnetism and Magnetic Materials, 321, 1604–1609, 2009. [16] Huang M.; Qiao Z.; Miao F.; Jia N.; Shen H. Biofunctional magnetic nanoparticles as contrast agents for magnetic resonance imaging of pancreas cancer. Microhim Acta, 167, 27–34, 2009. [17] Berry C. C., Wells S., Charles S., Aitchison G., and Curtis A. S. G. Cell response to dextran- derivatised iron oxide nanoparticles post internalisation. Biomaterials, 25, 5405–5413, 2004. [18] J. H. Clement, M. Schwalbe, N. Buske, K. Wagner, M. Schnabelrauch, P. Gornert, K. O. Kliche, K. Pachmann, W. Weitschies, and K. Hoffken. Differential interaction of magnetic nanoparticles with tumor cells and peripheral blood cells. Journal Cancer Res Clin Oncol, 132, 287–292, 2006. [19] Pedro Tartaj; Maria del Puerto Morales; Sabino Veintemillas-Verdaguer; Teresita Gonzalez-Carreno and Carlos J Serna. The preparation of magnetic nanoparticles for ap- plications in biomedicine. J. Phys. D: Appl. Phys., 36, 182–197, 2003. [20] P. P. C. Sartoratto and A. V. S. Neto; E. C. D. Lima; A. L. C. Rodrigues de SA¡; P. ̃ C. Morais. Preparation and electrical properties of oil-based magnetic fluids. Journal Applied of Physics, 97, 10Q917, 2005. [21] R.E. Rosensweig. Ferrohydrodynamics. Mineola: Dover Publ. NY, 1997. [22] George N. Glavee; Carl F. Kernizan; Kenneth J. Klabunde; Christopher M. Sorensen and George C. Hadjapanayis. Clusters of Immiscible Metals. Iron-Lithium Nanoscale Bimetallic BIBLIOGRAFIA 78 Particle Synthesis and Behavior under Thermal and Oxidative Treatments. Chem. Mater., 3, 967–976, 1991. [23] Massart R. Preparation of Aqueous Magnetic Liquids in Alkaline and Acidic Media. IEEE Transactions on Magnetics, 17, 1247–1248, 1981. [24] P.C. Morais;V..K. Garg; A.C. Oliveira; L.P.Silva; R.B. Azevedo; A.M.L. Silva and E.C.D. Lima. Synthesis and characterization of size-controlled cobalt-ferrite-based ionic ferrofluids. Journal of Magnetism and Magnetic Materials, 225, 37–40, 2001. [25] Anna C. S. Samia Adam J. Rondinone and Z. John Zhang. A Chemometric Approach for Predicting the Size of Magnetic Spinel Ferrite Nanoparticles from the Synthesis Conditions. J. Phys. Chem. B, 104, 7919–7922, 2000. [26] J. A. Lopez Perez, M. A. Lopez Quintela ; J. Mira; J. Rivas, and S. W. Charles. Advances in the Preparation of Magnetic Nanoparticles by the Microemulsion Method. J. Phys. Chem. B, 101, 8045–8047, 1997. [27] J.R. Thomas. Preparation and magnetic properties of colloidal cobalt particles. J. Appl. Phys, 37, 2914–2915, 1966. [28] R. Aquino; F.A. Tourinho; R. Itri; M.C.F.L. e Lara and J. Depeyrot. Size control of MnFe2O4 nanoparticles in electric double layered magnetic fluid synthesis. Journal of Mag- netism and Magnetic Materials, 252, 23–25, 2002. [29] Xuebo Cao and Li Gu. Spindly cobalt ferrite nanocrystals: preparation, characterization and magnetic properties. Nanotechnology, 16, 180–185, 2005. [30] Jian-Min Li, A. C. H. Huan, Liang Wang, You-Wei Du, and Duan Feng. Interface effects on magnetoresistance and magnetic-field-reduced Raman scattering in magnetite. Physical Review B, 61, 6876–6878, 2000. [31] A. Halbreich, J. Roger, J.N. Pens, D. Geldwerth, M.F. Da Silva, M. Roudier, and J.C. Bacri. Biomedical application of maghemite ferrofluid. Biochimie, 80, 379–390, 1998. [32] Arthur B. Ellis, Cynthia G. Widstrand, and Karen J. Nordell. Designing and Reporting Experiments in Chemistry Classes Using Examples from Materials Science: Illustrations of the Process and Communication of Scientific Research. J. Chem. Educ., 78, 1044, 2001. [33] Paul E. Laibinis Lifen Shen and T. Alan Hatton. Bilayer Surfactant Stabilized Magnetic Fluids: Synthesis and Interactions at Interfaces. Langmuir, 15, 447–453, 1999. BIBLIOGRAFIA 79 [34] P.G. Sobrinho Sousa M.H., J.C. Rubim and F.A. Tourinho. Biocompatible magnetic fluid precursors based on aspartic and glutamic acid modified maghemite nanostructures. Journal of Magnetism and Magnetic Materials, 225, 6772, 2001. [35] J. Petriz J. Garcia Mercadal M., J.C. Domingo and M.A. de Madariaga. Preparation of immunoliposomes bearing poly(ethylene glycol)-coupled monoclonal antibody linked via a cleavable disulfide bond for ex vivo applications. Biochimica et Biophysica Acta, 18, 299–210, 2000. [36] Robert S. Moldaya and Donald Mackenziea. Immunospecific ferromagnetic iron-dextran reagents for the labeling and magnetic separation of cells. Journal of Immunological Methods, 52, 353–367, 1982. [37] Carpenter EE Li SC John VT Charles J. O’Connor, Seip CT. SYNTHESIS AND REACTIV- ITY OF NANOPHASE FERRITES IN REVERSE MICELLAR SOLUTIONS. Nanostructured Materials, 12, 65–70, 1999. [38] Everett Carpenterb Claudio Sangregorioc Weilie Zhoua Amar Kumbhara Jessica Simsa Charles J. O’Connor, Vladimir Kolesnichenkoa and Fabrice Agnolia. Fabrication and prop- erties of magnetic particles with nanometer dimensions. Synthetic Metals, 122, 547–557, 2001. [39] Candace T. Seip and Charles J. O’Connor. THE FABRICATION AND ORGANIZATION OF SELF-ASSEMBLED METALLIC NANOPARTICLES FORMED IN REVERSE MICELLES. NanoStructured Materials, 12, 183–186, 1999. [40] E. R. Cintra, F. S. Ferreira, J. L. Santos Junior, J. C. Campello, L. M. Socolovsky, E.M. Lima, and A. F. Bakuzis. Nanoparticle agglomerates in magnetoliposomes. Nanotechnology, 20, 045103, 2009. [41] Fernanda M. Rocha, Samantha Cristina de Pinho, Ricardo L. Zollner, and Maria Helena A. Santana. Preparation and characterization of affinity magnetoliposomes useful for the detection of antiphospholipid antibodies. J. Magn. and Magnetic Materials, 225, 101–108, 2001. [42] L B Bangs. New developments in particle-based immunoassays: Introduction. Pure and Applied Chemistry, 68, 1873–1879, 1996. [43] P D Rye. Sweet and sticky: Carbohydrate coated magnetic beads. Bio-technology, 14, 155–157, 1996. BIBLIOGRAFIA 80 [44] B. Denizot, G. Tanguya, F. Hindrea, E. Rumpa, Jean Jacques Le Jeunea, and P. Jalleta. Phosphorylcholine Coating of Iron Oxide Nanoparticles. Journal of Colloid and Interface Science, 209, 66–71, 1999. [45] D. Portet, B. Denizot, E. Rump, Jean-Jacques Lejeune, and P. Jallet. Nonpolymeric Coat- ings of Iron Oxide Colloids for Biological Use as Magnetic Resonance Imaging Contrast Agents. Journal of Colloid and Interface Science, 238, 37–42, 2001. [46] Klaus Maier-Hauff Manfred Johannsen Peter Wust Jacek Nadobny Hermann Schirra Hel- mut Schmidt Serdar Deger Stefan Loening Wolfgang Lanksch Roland Felix Andreas Jor- dan, Regina Scholz. Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia. Journal of Magnetism and Magnetic Materials, 225, 118–126, 2001. [47] Ivo Safarik and Mirka Safarikova. Magnetic nanoparticles and biosciences. Monatshefte fur Chemie, 133, 737–759, 2002. [48] Sabolovic D Roger J Pons JN Sestier C, Da-Silva MF. Surface modification of superpara- magnetic nanoparticles (ferrofluid) studied with particle electrophoresis: Application to the specific targeting of cells. ELECTROPHORESIS, 19, 1220–1226, 1998. [49] Kobayashi T. Shinkai M., Honda H. Preparation of fine magnetic particles and application for enzime immobilization. Biocatalysis, 5, 61–69, 1991. [50] W Andra, C. G. d’Ambly, R. Hergt, I. Hilge, and W. A. Kaiser. Temperature distribution as function of time around a small spherical heat source of local magnetic hyperthermia. Journal of Magnetism and Magnetic Materials, 194, 197–203, 1999. [51] Peter Wust Horst Fahling Andreas Jordan, Regina Scholz and Roland Felix. Magnetic fluid hyperthermia (MFH): Cancer treatment with AC magnetic field induced excitation of biocom- patible superparamagnetic nanoparticles. Journal of Magnetism and Magnetic Materials, 201, 413–419, 1999. [52] RK Gilchrist, R Medal, WD Shorey, RC Hanselman, JC Parrott, and CB Taylor. Selective inductive heating of lymph nodes. Annals of surgery, 146, 596–606, 1957. [53] Paul A. Bunn Jr Daniel C.F. Chan, Dmitri B. Kirpotin. Synthesis and evaluation of col- loidal magnetic iron oxides for the site-specific radiofrequency-induced hyperthermia of cancer. Journal of Magnetism and Magnetic Materials, 122, 374–378, 1993. BIBLIOGRAFIA 81 [54] Wilfried Andra Robert Hiergeist Rudolf Hergt Werner A. Kaiser Ingrid Hilger, Ka- trin Fruhauf. Heating Potential of Iron Oxides for Therapeutic Purposes in Interventional Radiology. Academic Radiology, 9, 198–202, 2002. [55] R. E. Rosensweig. Heating magnetic fluid with alternating magnetic field. Journal of Mag- netism and Magnetic Materials, 252, 370–374, 2002. [56] Watson J H L Freeman M. W., Arrot A. Magnetism in medicine. J. App. Phy., 31, 404–405, 1960. [57] JC Joubert. Magnetic microcomposites as vectors for bioactive agents: The state of art. An. Quim., 93, S70–S76, 1997. [58] S Goodwin, C Peterson, C Hoh, and C Bittner. Targeting and retention of magnetic targeted carriers (MTCs) enhancing intra-arterial chemotherapy. Journal of Magnetism and Magnetic Materials, 194, 132–139, 1999. [59] Sabino Veintemillas-Verdaguer Teresita GonzA¡lez-Carreno Carlos J Serna Pedro Tartaj, ̃ Maria del Puerto Morales. The preparation of magnetic nanoparticles for applications in biomedicine. J. Phys. D: Appl. Phys., 36, 182–197, 2003. [60] Kehr J Klason T-Bjelke B Muhammed M Kim DK, Zhang Y. Characterization and MRI study of surfactant-coated superparamagnetic nanoparticles administered into the rat brain. Journal of Magnetism and Magnetic Materials, 225, 256–261, 2001. [61] Roberts HC Roberts TPL, Chuang N. Neuroimaging: do we really need new contrast agents for MRI? European Journal of Radiology, 34, 166178, 2000. [62] Weissleder R Basilion JP Hogemann D, Josephson L. Improvement of MRI probes to allow efficient detection of gene expression. Bioconjugate Chem., 11, 941–946, 2000. [63] Weissleder R Josephson L, Perez JM. Magnetic nanosensors for the detection of oligonu- cleotide sequences. Angew. Chem. Int., 40, 3204, 2001. [64] Josephson L Weissleder R Hogemann D, Ntziachristos V. High throughput magnetic reso- nance imaging for evaluating targeted nanoparticle probes. Bioconjugate Chem., 13, 116–121, 2002. [65] S. Neveu; A. Bee; M. Robineau and D. Talbot. Size-Selective Chemical Synthesis of Tartrate Stabilized Cobalt Ferrite Ionic Magnetic Fluid. Journal of Colloid and Interface Science, 255, 293–298, 2002. BIBLIOGRAFIA 82 [66] B. Payet, D. Vincent, L. Delaunay, and G. Noyel. Influence of particle size distribution on the initial susceptibility of magnetic fluids in the Brown relaxation range. Journal of Magnetism and Magnetic Materials, 186, 168–174, 1998. [67] J. Popplewell and L. Sakhnini. The dependence of the physical and magnetic properties of magnetic fluids on particle size. J. Magnetism and Magnetic Materials, 149, 72–78, 1995. [68] Leandro Carlos Figueiredo. Sistemas magn ́eticos nanoparticulados `a base de maghemita. Tese de Doutorado, IF-Universidade de Bas ́ılia, 2009. [69] David Servan-Schreiber. Anticˆancer. Fontanar, 2007. [70] T. Mossman. Rapid colorimetric assay for cellular grotwth and survival: application to prolif- eration and cytotoxicity assays. J. Immunol. Methods, 65, 55–63, 1983. [71] Carvalho G. S. Mota M. e Lima N. Dias N., Nicolau A. Miniaturization and application of the MTT assay to evaluate metabolic activity of protozoa in the presence of toxicants. J. Basic Microbiol., 39, 103–108, 1999. [72] L.C. Sampaio, F. Garcia, G.R.C. Gernicchiaro, and A.Y. Takeuchi. T ́ecnicas de Magne- tometria. Revista Brasileira de Ensino de F ́ısica, 22, 406–410, 1999. [73] S. Foner. The vibrating sample magnetometer: Experiences of a volunteer (invited). J. Appl. Phys., 79, 4740–4745, 1996. [74] Fashen Li Tao Wang, Ying Wang. Approach to prepare magnetic Mn0.5F e2.5O4 wires under an external magnetic field. Materials Letters, 60, 3899–3902, 2006. [75] Igor E. Agranovski Sangsun Yang Mansoo Choi Igor S. Altman, Yoon-Hyung Jang. Stabi- lization of spinel structure during combustion synthesis of iron nanooxides. Journal of Nanopar- ticle Research, 6, 633–637, 2004. [76] M. Tada, S. Hatanaka, H. Sanbonsugi, N. Matsushita, and M. Abe. Method for synthesizing ferrite nanoparticles ∼ 30nm in diameter on neutral pH condition for biomedical applications. Journal Applied of Physics, 93, 7566–7568, 2003. [77] J. Vidal-Vidal, J. Rivas, and M.A. L ’opez-Quintela. Synthesis of monodisperse maghemite nanoparticles by the microemulsion method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 288, 44–51, 2006. [78] I. T. Lucas, S. Durand-Vidal, E. Dubois, J. Chevalet, and P. Turq. Surface charge density of maghemite nanoparticles: Role of electrostatics in the proton exchange. Journal of Physical Chemistry C, 50, 18568, 2007. BIBLIOGRAFIA 83 [79] Wotschadlo J.; liebert T.; Heinze T.; Wagner K.; Schnabelrauch M.; Dutz S.; Muller R.; Steiniger F.; Schwalbe M.; Kroll T. C.; Hoffken K.; Buske N.; Clement J. H.;. Magnetic nanoparticles coated with carboxylnethylated polysaccharide shells - Interaction with human cells. J. Magnetism and Magnetic Materials, 321, 1469–1473, 2009. [80] M. Xu and P. J. Ridler. Linear dichroism and birefringence effects in magnetic fluids. J. Appl. Phys., 82, 326–332, 1997. [81] K. Butter, P.H.H Bomans, P.M. Frederik, G.J. Vroege, and A.P. Philipse. Direct observation of dipolar chains in iron ferrofluids by cryogenic electron microscopy. Nature Materials, 2, 88–91, 1996. [82] W. F. J. Fontijin, P. J. van der Zagg, M. A. C. Devillers, and R. Metselaar. Optical and magneto-optical polar Kerr spectra of F e3O4 and Mg2+- or Al3+- substituted F e3O4. Physical Review B, 56, 5432, 1997. [83] C.F. Bohren and D.R. Huffman. Absorption and Scattering of Light by Small Particles. John Wiley and Sons, 1983. |
Page generated in 0.0153 seconds