Return to search

Nanofabrication and Characterization of an Enzyme-Less Electrochemical Biosensor for Creatinine Detection

This study will reveal the fabrication and development of an enzyme-less biosensor for creatinine detection. The biosensor involves a periodically patterned nano-porous TiO2 deposited with Au nanoparticles via e-beam evaporation and a layer of Imprinted Polymer (IP) of acrylamide and bis-acrylamide to obtain a heterostructure of I-Au-TiO2. The detection methods of creatinine are based on electrochemical measurements using Cyclic Voltammetry (CV), Electrochemical Impedance Spectroscopy (EIS) and Differential Pulse Voltammetry (DPV). The IP-Au-TiO2 sensor shows a detection LOD of 0.0949ng/mL and 0. 0.218ng/mL for EIS and DPV measurements, respectively. The nanofabricated biosensor was tested in the presents of urea, glucose, lactose, L-valine, and Glutamic acid and shows high specificity for creatinine due to the specific binding of the analyte to the imprinted polymer on the electrode. A comparison test was performed between the imprinted IP-Au-TiO2 versus Non-Imprinted (NI) NI-Au-TiO2 biosensors. the results show no specificity for the creatinine using NI-Au-TiO2 biosensor for the varied concentration from 0.1ng/ml to 1µg/ml compared to the I-Au-TiO2. However, The N-Au-TiO2 show enhanced specificity for creatinine in the presence of Localized Surface Plasmon Resonance (LSPR) at the interface of the Au nanoparticles and TiO2. The generated LSPR on the surface of the biosensor increased the sensitivity for creatinine due to charge separation and solution resistance between the sensor and mixture. This detection platform provided a promising result which can be easily expanded to detecting a variety of biomarkers linked to human diseases or pathogens such as bacteria or viruses for point of care detection.

Identiferoai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:etd2020-1327
Date01 January 2020
CreatorsBelharsa, Anas
PublisherSTARS
Source SetsUniversity of Central Florida
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceElectronic Theses and Dissertations, 2020-

Page generated in 0.0012 seconds