Defective structures in two-dimensional (2D) materials have been proved to have significant influences on the materials' properties. Understanding structural defects in 2D materials at atomic scale is therefore required. With the use of advanced imaging techniques, one of the main approaches applied in this project was aberration-corrected transmission electron microscopy (AC-TEM), the structures are able to be resolved with single-atom sensitivity with the reduction of both spherical aberration and the influence of chromatic aberration. This laid the foundation for the first two experiments, which involve the bond length measurement of each C-C bond within three types of divacancies and Si-C bonds at graphene edges. The former explains the tendency of bond rotations within the divacancies from the perspective of strain inside the defective areas and surrounding lattice; the latter revels the interactions between isolated Si atoms and zigzag/armchair graphene edges. The use of in-situ heating holder in the AC-TEM makes the direct visualization of structures and their dynamics at elevated temperatures possible. The Si-graphene edge interactions, as well as the following two experiments are all designed to study the high-temperature performances for different systems. Gold nanoclusters are introduced to monolayer graphene by thermal evaporation to study the interaction between gold and graphene at elevated temperature. Due to the strong interaction between gold and graphene, gold crystals are able to adapt to planar configurations with two different crystalline forms, and an epitaxial relationship was found for planar gold crystals and graphene. Atomically flat and long line defects and zigzag edges in monolayer molybdenum disulfide (MoS<sub>2</sub>) are successfully created by in-situ thermal annealing. The relationship between S vacancy mobility and defect forms are revealed based on the experiment. High-temperature atomic configurations of line defects and edge terminations are resolved in the first time. Their electronic properties are also explored with the support of density functional theory calculations.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:729107 |
Date | January 2017 |
Creators | Chen, Qu |
Contributors | Warner, Jamie |
Publisher | University of Oxford |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | https://ora.ox.ac.uk/objects/uuid:392f2b1d-0488-4d10-96d9-817def04db2a |
Page generated in 0.0443 seconds