Return to search

Chemical Vapor Deposition Growth and Density Functional Theory Calculations of Trilayer Graphene

Density functional theory was employed to investigate the energetics of ABA, ABC, and intermediary stacked phases for both pristine and s-triazine functionalized graphene trilayers. The energy of the ABC-stacked phase relative to the pristine ABA-stacked ground state showed a 94% increase when s-triazine was adsorbed to the graphene surface, confirming previous studies of the ability of s-triazine to facilitate the ABC to ABA phase-transition. This work is outlined in an enclosed publication titled “Trilayer Graphene as a Candidate Material for Phase Change Memory Applications.” Subsequently, low-pressure CVD was used to synthesize single-crystal graphene trilayers of up to 200 µm, the largest reported thus far. The defect density, stacking density, and morphology of the CVD-grown graphene trilayers are evaluated using Raman spectroscopy. The layers are also shown to be directly discernable as-grown on copper substrates using dark-field optical microscopy even without contrast oxidation of the copper film, representing a quick and reliable method for their identification. Slow-etching of the graphene yielded well-aligned, hexagonal domains further indicating the high-quality, single-crystalline of the graphene.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-206117
Date January 2016
CreatorsAtwa, Mohamed
PublisherKTH, Skolan för informations- och kommunikationsteknik (ICT)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-ICT-EX ; 2016:193

Page generated in 0.0021 seconds