Return to search

Modification de surface des nanotubes de carbone par un polymère conducteur électrogénéré pour la réalisation de nanocomposites multifonctionnels / Non fourni.

Du fait de leurs propriétés intrinsèques exceptionnelles, les nanotubes de carbone (CNTs) sont des matériaux bien adaptés pour renforcer les polymères thermodurcissables. Le nanocomposite multifonctionnel ainsi obtenu possède des propriétés électriques, thermiques et mécaniques sensiblement meilleures que le polymère seul, ce qui lui procure de nombreuses applications potentielles, et tout particulièrement dans le domaine de l’électronique ou de l’aéronautique. Le but de cette thèse de doctorat est orienté suivant deux axes. Il s’agit dans un premier temps de mettre au point un matériau nanocomposite avec des propriétés multifonctionnelles à partir de techniques d’élaborations efficaces. Puis dans un second temps, l’objectif consiste à proposer des alternatives permettant d’améliorer ces propriétés. Le premier chapitre de cette thèse établit une revue de l’état de l’art au sujet des matériaux qui ont été étudiés au cours de ce travail de recherche. Parmi ces matériaux, nous pouvons citer tout particulièrement les CNTs, les renforts hybrides nano/micrométriques constitués de CNTs et d’alumine, les polymères conducteurs électroniques et les polymères thermodurcissables. Il s’agit plus précisément de présenter pour chaque matériau les techniques d’élaboration, leurs structures et finalement leurs propriétés. Dans la seconde partie du manuscrit, nous décrivons en premier lieu les procédés d’élaboration permettant d’obtenir des nanocomposites conformes aux normes internationales. Ensuite, nous présentons les différentes techniques de caractérisation de ces nanomatériaux. Il s’agit notamment de déterminer les phénomènes de transports électriques et thermiques. Des techniques d’analyses supplémentaires permettent de mieux comprendre la structure des matériaux obtenus dans une gamme d’échelle allant de l’état macroscopique à l’atomique. Ainsi, nous avons eu recours à l’utilisation de la microscopie électronique à balayage et en transmission, et aussi la microscopie à force atomique (AFM). Différentes études spectroscopiques de types : Raman, perte d’énergie des électrons (EELS), photoélectrons X (XPS) fournissent des informations additionnelles sur ces matériaux. Les résultats obtenus sur ces nanocomposites en matière de transports électronique et thermique montrent que certaines améliorations sont nécessaires pour optimiser les propriétés multifonctionnelles de ces nanomatériaux. Nous avons concentré nos efforts sur les phénomènes physicochimiques à l’interface matrice/renfort. Par conséquent, nous avons décidé de modifier la surface des CNTs afin de favoriser la cohésion matrice/renfort, mais aussi et surtout, pour diminuer les résistances de contacts entre les CNTs lorsqu’ils sont distribués aléatoirement dans une matrice polymère. Le dernier chapitre de la thèse s’articule autour de la fonctionnalisation des CNTs par un polymère conducteur électronique (ECP). Dans un premier temps, nous avons mis au point des techniques électrochimiques permettant de déposer une couche homogène d’épaisseur nanométrique d’ECP à la surface des CNTs. Ce polymère conducteur et en même temps biocompatible est le polypyrrole (Ppy). La précision et l’efficacité de notre démarche sont démontrées par les différents outils de caractérisation, et tout particulièrement grâce à la microscopie électronique en transmission à haute résolution. Des études supplémentaires par AFM couplé à un résiscope ont montré l’évolution de la résistance électrique d’hybrides CNT-Ppy plus ou moins isolés. Dans une seconde partie, nous avons mis au point une méthode permettant de contrôler finement l’épaisseur de Ppy déposé à la surface des CNTs. / Carbon nanotubes (CNTs) are ideal candidates to reinforce thermoset polymers due to their exceptional intrinsic properties. The resulting multifunctional nanocomposite has electrical, thermal and mechanical properties sensitively higher than pristine polymer. Therefore, this new material possesses various potential applications, and particularly in the domain of electronics and aerospace. The aim of this PhD thesis is oriented towards two directions. In the first one, we establish efficient techniques to produce composite materials with multifunctional properties. Then, the objective consists in the enhancement of these properties by proposing valuable alternatives to previous results cited in the litterature. In the first chapter, we present the state of the art research concerning the materials studied during this work. Among these, there are in particular: CNTs, hybrids constituted of CNTs and alumina microparticles, electronically conducting and thermoset polymers. Moreover, this chapter deals with the characteristics of each material, i.e. elaboration techniques, structures and properties. The second chapter of the manuscript contains first, the elaboration techniques allowing the synthesis of high quality nanocomposites according to international standards. Then, we analyze the properties of these nanomaterials, and particularly in terms of electrical and thermal transports. Further characterization procedures allow better understanding of the obtained structures in a domain ranging from macroscopic to atomic scales. This is realized using scanning/transmission electron microscopy, Raman spectroscopy, EELS, XPS, and AFM. Electrical and thermal conductivity measurements obtained on these new materials give prominence to the necessity of some improvements. Thereby, we have focused our research on the physico-chemical phenomena at the matrix/filler interface. We have proposed to modify the surface of CNTs, in order to favour the matrix/filler cohesion, but also and mainly to decrease contact resistances between the randomly distributed CNTs within the polymer matrix. Finally, the last chapter deals with the surface functionalization of CNTs using electrochemistry. First, we have implemented an accurate technique to deposit a nanometric layer of electronically conducting polymer on the surface of CNTs. This conducting polymer, namely polypyrrole (Ppy) is in the meantime biocompatible. The accuracy and efficiency of our approach are demonstrated through various characterization techniques, and particularly using transmission electron microscopy. Further studies using AFM coupled with a resiscope indicate the electrical resistance distribution performed on CNT-Ppy hybrids. In the second part of this chapter, we present our method to control precisely the thickness of the Ppy layer around the CNTs.

Identiferoai:union.ndltd.org:theses.fr/2009ECAP0043
Date07 December 2009
CreatorsBozlar, Mickaël
ContributorsChâtenay-Malabry, Ecole centrale de Paris, Bai, Jinbo, Miomandre, Fabien
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0025 seconds