Causal graphs are a useful notation to represent the interplay between the actors as well as the polarity and strength of the relationship that they share. They are used extensively in educational, professional, and industrial contexts to simulate different scenarios, validate behavioral aspects, visualize the connections between different processes, and explore the adversarial effects of changing certain nodes. However, as the size of the causal graphs increase, interpreting them also becomes increasingly tougher. In such cases, new analytical tools are required to enhance the user's comprehension of the graph, both in terms of correctness and speed. To this purpose, this thesis introduces 1) a system that allows for causal exploration of directed graphs, while enabling the user to see the effect of interventions on the target nodes, 2) the use of natural language generation techniques to create a coherent passage explaining the propagation effects, and 3) results of an expert user study validating the efficacy of the narratives in enhancing the user's understanding of the causal graphs. In overall, the system aims to enhance user experience and promote further causal exploration. / Master of Science / Narrative generation is the art of creating coherent snippets of text that cumulatively describe a succession of events, played across a period of time. These goals of narrative generation are also shared by causal graphs – models that encapsulate inferences between the nodes through the strength and polarity of the connecting edges. Causal graphs are an useful mechanism to visualize changes propagating amongst nodes in the system. However, as the graph starts addressing real-world actors and their interactions, it becomes increasingly difficult to understand causal inferences between distant nodes, especially if the graph is cyclic. Moreover, if the value of more than a single node is altered and the cumulative effect of the change is to be perceived on a set of target nodes, it becomes extremely difficult to the human eye. This thesis attempts to alleviate this problem by generating dynamic narratives detailing the effect of one or more interventions on one or more target nodes, incorporating time-series analysis, Wikification, and spike detection. Moreover, the narrative enhances the user's understanding of the change propagation occurring in the system. The efficacy of the narrative was further corroborated by the results of user studies, which concluded that the presence of the narrative aids the user's confidence level, correctness, and speed while exploring the causal network.
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/98670 |
Date | 02 June 2020 |
Creators | Choudhry, Arjun |
Contributors | Computer Science, Ramakrishnan, Naren, Reddy, Chandan K., Lu, Chang-Tien |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Thesis |
Format | ETD, application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0024 seconds