This paper presents the results of a study on exhaust manifold design for a NASCAR Restrictor plate internal combustion engine. A computer simulation model was developed using Ricardo WAVE software. WAVE is a computer-aided engineering code developed by Ricardo to analyze the dynamics of pressure waves, mass flows and energy losses in ducts, plenums and the intake and exhaust manifolds of various systems and machines. [1] The model was validated against experimental data from a current NASCAR Winston Cup restrictor plate motor. The parameters studied have been exhaust manifold diameters and lengths. A response surface analysis of the simulation output followed. The analysis of results shows the design parameters of the existing exhaust manifold are not optimized. The findings from these studies are used to derive exhaust system design guidelines which define optimum exhaust system geometry to maximize average Brake Horsepower over a given powerband for a restrictor plate NASCAR engine.
Identifer | oai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:etd-1022 |
Date | 01 January 2004 |
Creators | Dollhopf, Matthew John |
Publisher | STARS |
Source Sets | University of Central Florida |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Electronic Theses and Dissertations |
Page generated in 0.0018 seconds