Return to search

Early Life History Dynamics of the Fish Community in the Atchafalaya River Basin

Seasonal overbank flooding in systems like the Atchafalaya River Basin (ARB) provides the opportunity for fishes in the mainstem to access off-channel areas on the floodplain. Typically, newly inundated floodplain habitats allow adult fishes to add biomass, avoid predation, and potentially, to reproduce. However, in systems like the ARB, the timing, duration, and magnitude of flooding infrequently coincides with known reproductive periods of many fishes assumed to be floodplain-dependent.
To quantify the level of floodplain-exploitative fish reproduction in the ARB, I collected larval and juvenile fish with a variety of sampling gear that allowed estimates in both ultra-shallow (< 2-m) and continuously-inundated habitats (headwater lakes, canals, and bayous). A suite of water quality parameters, river stage, flow, and hours of daylight were used to gauge the influence of environmental phenomena on age-0 abundance during both inundation and drawdown. The results of the 19-month study suggest that many taxa do not rely on the floodplain to ensure high survivorship. Interestingly, the reproductive ecologies of many ARB fishes appeared to be largely independent of widespread connectivity. Although an increasing hydrograph appeared to enhance reproductive output, the interannual timing and intensity of spawning showed limited variability.
Larval densities were also contrasted with the microcrustacean zooplankton (copepods and cladocerans) population to assess if a potential food limitation existed in the weeks and months following hatching. During the study, increased zooplankter abundance was typically preceded by elevated river-floodplain connectivity. Conversely, as floodwaters receded during the summer, zooplankton abundance declined to lowest levels observed during the study. Overall, there was limited synchronous overlap between the hatchlings of most fish taxa and their zooplankter prey. This could have potentially resulted in starvation and reduced annual recruitment. Yet, my analysis of the factors that regulate larval fish abundance in the ARB suggest that the density of zooplankton was highly significant although high numbers of larvae and zooplankton rarely coincided.
Finally, I compared the intraday (morning vs. afternoon) density and mean length of larval fish at fixed sample sites. The results suggest that once-daily ichthyoplankton collections may fail to provide accurate density and length measurements for young fish populations.

Identiferoai:union.ndltd.org:LSU/oai:etd.lsu.edu:etd-07082010-162705
Date09 July 2010
CreatorsHalloran, B. Thorpe
ContributorsKing, Sammy, King, Gary, Kelso, William, Rutherford, D. Allen, Geaghan, James, Benfield, Mark
PublisherLSU
Source SetsLouisiana State University
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lsu.edu/docs/available/etd-07082010-162705/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached herein a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to LSU or its agents the non-exclusive license to archive and make accessible, under the conditions specified below and in appropriate University policies, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0056 seconds