The improvement of water quality in the streams of the Glenelg Hopkins catchment is a priority of the Glenelg Hopkins regional strategy. A major source of water pollution in the region is linked to agricultural activities as high nutrient levels from runoff have the potential to increase the incidence of blue-green algae in the waterways. Land use change, reduced rainfall, more frequent extreme rainfall events and higher temperatures associated with climate change are likely to exacerbate this trend. Water testing data of the Total Phosphorus (TP) levels in the Hopkins River and at other sites within the Hopkins Catchment indicate increasing incidence of TP above the Environment Protection Authority's target levels for extended periods of each year. Earlier research indicated that phosphorus in runoff increases when pasture fertility increases and that fertiliser management practices should be considered as an element of preventative action for reducing nutrient pollution. During our research, a survey was undertaken in the Hopkins River catchment, to determine the current management of phosphorus (P) fertilisers on grazing and mixed enterprise farms, the attitude of farmers to natural resource management and their understanding of nutrient pollution. The survey also gathered information on the way farmers made fertiliser management decisions. If cooperation relating to phosphorus fertiliser application could be facilitated between groups of farmers, it may be possible to reduce nutrient runoff into the Hopkins waterways. Cooperative game theory has successfully been used worldwide in the resolution of environmental problems where there is an economic impact to the decision making process. In this project, the amount of phosphorus applied per hectare was used in a cooperative game theory model assessing the potential for cooperative action on phosphorus management by groups of farmers, based on the trade off between the economic cost of pollution to the region waterways and the economic production benefits to the individual. The outcome of this work was individual optimal strategies for fertiliser application, allowing individual farmers to reduce their impact of agricultural production on the health of the catchment. Involving the farmer groups, while undertaking the project, raised awareness amongst the farming population of the regional nutrient pollution caused by runoff from agricultural land, and enlisted their assistance towards adopting a cooperative approach to the problem. In addition, the results have been mapped using a Geographical Information System (GIS) for visual presentation and to demonstrate the use of this process in natural resource management with the farmer groups.
Identifer | oai:union.ndltd.org:ADTP/233144 |
Date | January 2009 |
Creators | Schlapp, Julia Emily, julia.schlapp@rmit.edu.au |
Publisher | RMIT University. Mathematics and Geospatial Science |
Source Sets | Australiasian Digital Theses Program |
Language | English |
Detected Language | English |
Rights | http://www.rmit.edu.au/help/disclaimer, Copyright Julia Emily Schlapp |
Page generated in 0.0016 seconds