Return to search

Physical simulation, fabrication and characterization of Wide bandgap semiconductor devices

Wide band gap semiconductors, Zinc Oxide (ZnO), Gallium Nitride (GaN) and Silicon Carbide (SiC) have been emerged to be the most promising semiconductors for future applications in electronic, optoelectronic and power devices. They offer incredible advantages in terms of their optical properties, DC and microwave frequencies power handling capability, piezoelectric properties in building electromechanical coupled sensors and transducers, biosensors and bright light emission. For producing high quality devices, thermal treatment always plays an important role in improving material structural quality which results in improved electrical and optical properties. Similarly good quality of metal–semiconductor interface, sensitive to the semiconductor surface, is always required. In this thesis we report the study of the interface states density for Pd/Ti/Au Schottky contacts on the free-standing GaN and post fabrication annealing effects on the electrical and optical properties of ZnO/Si hetero-junction diodes. The determination of interface states density (NSS) distribution within the band gap would help in understanding the processes dominating the electrical behavior of the metal–semiconductor contacts. The study of annealing effects on photoluminescence, rectification and ideality factor of ZnO/Si hetero-junction diodes are helpful for optimization and realization to build up the confidence to commercialize devices for lightening. A comparison of device performance between the physical simulations and measured device characteristics has also been carried out for pd/ZnO Schottky diode to understand the behavior of the devices. This research work not only teaches the effective way of device fabrication, but also obtains some beneficial results in aspects of their optical and electrical properties, which builds theoretical and experimental foundation for much better and broader applications of wide band gap semiconductor devices.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-68076
Date January 2011
CreatorsMuniza Faraz, Sadia
PublisherLinköpings universitet, Institutionen för fysik, kemi och biologi, Linköpings universitet, Tekniska högskolan, Linköping : Linköping University Electronic Press
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeLicentiate thesis, comprehensive summary, info:eu-repo/semantics/masterThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationLinköping Studies in Science and Technology. Thesis, 0280-7971 ; 1492

Page generated in 0.002 seconds