Return to search

Evaluating soil health changes following cover crop and no-till integration into a soybean (Glycine max) cropping system in the Mississippi Alluvial Valley

The transition of natural landscapes to intensive agricultural uses has resulted in severe loss of soil organic carbon (SOC), increased CO₂ emissions, river depletion, and groundwater overdraft. Despite negative documented effects of agricultural land use (i.e., soil erosion, nutrient runoff) on critical natural resources (i.e., water, soil), food production must increase to meet the demands of a rising human population. Given the environmental and agricultural productivity concerns of intensely managed soils, it is critical to implement conservation practices that mitigate the negative effects of crop production and enhance environmental integrity. In the Mississippi Alluvial Valley (MAV) region of Mississippi, USA, the adoption of cover crop (CC) and no-tillage (NT) management practices has been low because of a lack of research specific to the regional nuances. Therefore, this study assessed the long-term soil physiochemical and biological responses from integrating CC and NT management to agricultural soils of the region. Research plots were established in a split-block design with two tillage treatments: NT and reduced tillage (RT) and three CC treatments: no cover (NC), rye (RY) and a rye+clover (RC) mix. Soil samples were taken during the growing season of 2019 and 2020. Bulk density was found to be significantly lower in NT plots and aggregate stability was greatest in plots with a single CC species. Moisture retention increased in NT.. Soil organic carbon was greater in NT and CC treatments and there was no difference in CO₂ flux. Bacterial abundance had a positive effect on SOC but a negative effect on CO₂. The rate of proportional change and pattern of variability in C pools suggested loss of SOC in reduced tillage (RT) treatments. Microbial abundance, functional genes and enzyme activity was greater in NT with CC, but diversity was greater in RT. No-tillage practices lower diversity and influence long-term community changes while CC practices enact a seasonal response to environmental conditions. I conclude that in heavy clay soils of the mid-South region of the MAV, RT with a CC is optimal for soil health traits associated with crop sustainability, however the management will still contribute to increased CO₂ emissions.

Identiferoai:union.ndltd.org:MSSTATE/oai:scholarsjunction.msstate.edu:td-6501
Date13 May 2022
CreatorsFirth, Alexandra Gwin
PublisherScholars Junction
Source SetsMississippi State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations

Page generated in 0.0024 seconds