Return to search

The weakly nonlinear stability of an oscillatory fluid flow

A weakly nonlinear stability analysis was conducted for the flow induced in an incompressible, Newtonian, viscous fluid lying between two infinite parallel plates which form a channel. The plates are oscillating synchronously in simple harmonic motion. The disturbed velocity of the flow was written in the form of a series in powers of a parameter which is a measure of the distance away from the linear theory neutral conditions. The individual terms of this series were decomposed using Floquet theory and Fourier series in time. The equations at second order and third order in were derived, and solutions for the Fourier coefficients were found using pseudospectral methods for the spatial variables. Various alternative methods of computation were applied to check the validity of the results obtained. The Landau equation for the amplitude of the disturbance was obtained, and the existence of equilibrium amplitude solutions inferred. The values of the coefficients in the Landau equation were calculated for the nondimensional channel half-widths h for the cases h = 5, 8, 10, 12, 14 and 16. It was found that equilibrium amplitude solutions exist for points in wavenumber Reynolds number space above the smooth portion of the previously determined linear stability neutral curve in all the cases examined. Similarly, Landau coefficients were calculated on a special feature of the neutral curve (called a ???finger???) for the case h = 12. Equilibrium amplitude solutions were found to exist at points inside the finger, and in a particular region outside near the top of the finger. Traces of the x-components of the disturbance velocities have been presented for a range of positions across the channel, together with the size of the equilibrium amplitude at these positions. As well, traces of the x-component of the velocity of the disturbed flow and traces of the velocity of the basic flow have been given for comparison at a particular position in the channel.

Identiferoai:union.ndltd.org:ADTP/257660
Date January 2006
CreatorsReid, Francis John Edward, School of Mathematics, UNSW
PublisherAwarded by:University of New South Wales. School of Mathematics
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
RightsCopyright Francis John Edward Reid, http://unsworks.unsw.edu.au/copyright

Page generated in 0.0019 seconds