Return to search

The adomian decomposition method applied to blood flow through arteries in the presence of a magnetic field

A dissertation submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in fulfilment of requirements for the degree of Master of Science. February 16, 2015. / The Adomian decomposition method is an effective procedure for the
analytical solution of a wide class of dynamical systems without linearization
or weak nonlinearity assumptions, closure approximations, perturbation
theory, or restrictive assumptions on stochasticity. Our aim here is to apply
the Adomian decomposition method to steady two-dimensional blood
flow
through a constricted artery in the presence of a uniform transverse magnetic
field. Blood
flow is the study of measuring blood pressure and determining

flow through arteries. Blood
flow is assumed to be Newtonian and is governed
by the equation of continuity and the momentum balanced equation (which
are known as the Navier-Stokes equations). This model is consistent with
the principles of ferro-hydrodynamics and magnetohydrodynamics and takes
into account both magnetization and electrical conductivity of blood. We
apply the Adomian decomposition method to the equations governing blood

flow through arteries in the presence of an external transverse magnetic field.
The results show that the e ect of a uniform external transverse magnetic
field applied to blood
flow through arteries favors the physiological condition
of blood. The motion of blood in stenosed arteries can be regulated by
applying a magnetic field externally and increasing/decreasing the intensity
of the applied field.

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:wits/oai:wiredspace.wits.ac.za:10539/17648
Date06 May 2015
CreatorsUngani, Tendani Patrick
Source SetsSouth African National ETD Portal
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf, application/pdf

Page generated in 0.0018 seconds