It was shown analytically and experimentally that when the cavity losses are perturbed, the output intensity experiences an amplitude modulation or becomes a regular train of spikes, with the frequency depending on both the frequency of perturbation as well as pump power. Coupled nonlinear rate equations including the cavity perturbation term, are solved numerically by a Runga-Kutta method using experimentally-measured parameter values for Nd: Y AG laser. A continuously pumped Nd: Y AG laser was used to verify this theory.
Identifer | oai:union.ndltd.org:pdx.edu/oai:pdxscholar.library.pdx.edu:open_access_etds-5712 |
Date | 14 September 1993 |
Creators | Shori, Ramesh K |
Publisher | PDXScholar |
Source Sets | Portland State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Dissertations and Theses |
Page generated in 0.0023 seconds