Return to search

Leaf Area Index (LAI) monitoring at global scale : improved definition, continuity and consistency of LAI estimates from kilometric satellite observations / Suivi de l'indice foliaire (LAI) à l'échelle globale : amélioration de la définition, de la continuité et de la cohérence des estimations de LAI à partir d'observations satellitaires kilometriques

Le suivi des variables biophysiques à l’échelle globale sur de longues périodes de temps est essentiellepour répondre aux nouveaux enjeux que constituent le changement climatique et la sécurité alimentaire. L’indice foliaire (LAI) est une variable de structure définissant la surface d’interception du rayonnement incident et d’échanges gazeux avec l’atmosphère. Le LAI est donc une variable importante des modèles d’écosystèmes et a d’ailleurs été reconnue comme variable climatique essentielle (ECV). Cette thèse a pour objectif de fournir des estimations globales et continues de LAI à partir d’observations satellitaires en temps quasi-réel en réponse aux besoins des utilisateurs pour fournir des diagnostiques et pronostiques de l’état et du fonctionnement de la végétation. Quelques produits LAI sont déjà disponibles mais montrent des désaccords et des limitations en termes de cohérence et de continuité. Cette thèse a pour objectif de lever ces limitations. Dans un premier temps, on essaiera de mieux définir la nature des estimations de LAI à partir d’observations satellitaires. Puis, différentes méthodes de lissage te bouchage des séries temporelles ont été analysées pour réduire le bruit et les discontinuités principalement liées à la couverture nuageuse. Finalement quelques méthodes d’estimation temps quasi réel ont été évaluées en considérant le niveau de bruit et les données manquantes.Les résultats obtenus dans la première partie de cette thèse montrent que la LAI effectif et bien mieux estimé que la valeur réelle de LAI du fait de l’agrégation des feuilles observée au niveau du couvert. L’utilisation d’observations multidirectionnelles n’améliore que marginalement les performances d’estimation. L’étude montre également que les performances d’estimation optimales sont obtenues quand les solutions sont recherchées à l’intérieur d’une enveloppe définie par l’incertitude associée aux mesures radiométriques. Dans la deuxième partie consacrée à l’amélioration de la continuité et la cohérence des séries temporelles, les méthodes basées sur une fenêtre temporelle locale mais de largeur dépendant du nombre d’observations présentes, et utilisant la climatologie comme information a priori s’avèrent les plus intéressantes autorisant également l’estimation en temps quasi réel. / Monitoring biophysical variables at a global scale over long time periods is vital to address the climatechange and food security challenges. Leaf Area Index (LAI) is a structure variable giving a measure of the canopysurface for radiation interception and canopy-atmosphere interactions. LAI is an important variable in manyecosystem models and it has been recognized as an Essential Climate Variable. This thesis aims to provide globaland continuous estimates of LAI from satellite observations in near-real time according to user requirements to beused for diagnostic and prognostic evaluations of vegetation state and functioning. There are already someavailable LAI products which show however some important discrepancies in terms of magnitude and somelimitations in terms of continuity and consistency. This thesis addresses these important issues. First, the nature ofthe LAI estimated from these satellite observations was investigated to address the existing differences in thedefinition of products. Then, different temporal smoothing and gap filling methods were analyzed to reduce noiseand discontinuities in the time series mainly due to cloud cover. Finally, different methods for near real timeestimation of LAI were evaluated. Such comparison assessment as a function of the level of noise and gaps werelacking for LAI.Results achieved within the first part of the thesis show that the effective LAI is more accurately retrievedfrom satellite data than the actual LAI due to leaf clumping in the canopies. Further, the study has demonstratedthat multi-view observations provide only marginal improvements on LAI retrieval. The study also found that foroptimal retrievals the size of the uncertainty envelope over a set of possible solutions to be approximately equal tothat in the reflectance measurements. The results achieved in the second part of the thesis found the method withlocally adaptive temporal window, depending on amount of available observations and Climatology as backgroundestimation to be more robust to noise and missing data for smoothing, gap-filling and near real time estimationswith satellite time series.

Identiferoai:union.ndltd.org:theses.fr/2013AVIG0649
Date13 March 2013
CreatorsKandasamy, Sivasathivel
ContributorsAvignon, Baret, Frédéric
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0029 seconds