Object-based image analysis (OBIA) has been increasingly used to identify terrain features of archaeological sites, but only recently to extract subsurface archaeological features from geophysical data. In this study, we use a semi-automated OBIA to identify Archaic (8000-1000 BC) hearths from Ground-Penetrating Radar (GPR) data collected at David Crockett Birthplace State Park in eastern Tennessee in the southeastern United States. The data were preprocessed using GPR-SLICE, Surfer, and Archaeofusion software, and amplitude depth slices were selected that contained anomalies ranging from 0.80 to 1.20 m below surface (BS). Next, the data were segmented within ESRI ArcMap GIS software using a global threshold and, after vectorization, classified using four attributes: area, perimeter, length-to-width ratio, and Circularity Index. The user-defined parameters were based on an excavated Archaic circular hearth found at a depth greater than one meter, which consisted of fire-cracked rock and had a diameter greater than one meter. These observations were in agreement with previous excavations of hearths at the site. Features that had a high probability of being Archaic hearths were further delineated by human interpretation from radargrams and then ground-truthed by auger testing. The semi-automated OBIA successfully predicted 15 probable Archaic hearths at depths ranging from 0.85 to 1.20 m BS. Observable spatial clustering of hearths may indicate episodes of seasonal occupation by small mobile groups during the Archaic Period.
Identifer | oai:union.ndltd.org:ETSU/oai:dc.etsu.edu:etsu-works-10716 |
Date | 01 August 2020 |
Creators | Cornett, Reagan L., Ernenwein, Eileen G. |
Publisher | Digital Commons @ East Tennessee State University |
Source Sets | East Tennessee State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | ETSU Faculty Works |
Rights | http://creativecommons.org/licenses/by/4.0/ |
Page generated in 0.0019 seconds