Next generation photonics-based technologies will ultimately rely on novel materials and devices. For this purpose, phenomena at subwavelength scales are being studied to advance both fundamental knowledge and experimental capabilities. In this dissertation, concepts specific to near-field optics and experimental capabilities specific to near-field microscopy are used to investigate various aspects of the statistical properties of random electromagnetic fields in the vicinity of optically inhomogeneous media which emit or scatter radiation. The properties of such fields are being characterized within the frame of the coherence theory. While successful in describing the far-field properties of optical fields, the fundamental results of the conventional coherence theory disregard the contribution of short-range evanescent waves. Nonetheless, the specific features of random fields at subwavelength distances from interfaces of real media are influenced by the presence of evanescent waves because, in this case, both propagating and nonpropagating components contribute to the detectable properties of the radiation. In our studies, we have fully accounted for both contributions and, as a result, different surface and subsurface characteristics of inhomogeneous media could be explored. We investigated different properties of random optical near-fields which exhibit either Gaussian or non-Gaussian statistics. We have demonstrated that characteristics of optical radiation such as first- and second-order statistics of intensity and the spectral density in the vicinity of random media are all determined by both evanescent waves contribution and the statistical properties of the physical interface. For instance, we quantified the subtle differences which exist between the near- and far-field spectra of radiation and we brought the first experimental evidence that, contrary to the predictions of the conventional coherence theory, the values of coherence length in the near field depend on the distance from the interface and, moreover, they can be smaller than the wavelength of light. The results included in this dissertation demonstrate that the statistical properties of the electromagnetic fields which exist in the close proximity of inhomogeneous media can be used to extract structural information. They also suggest the possibility to adjust the coherence properties of the emitted radiation by modifying the statistical properties of the interfaces. Understanding the random interference phenomena in the near-field could also lead to new possibilities for surface and subsurface diagnostics of inhomogeneous media. In addition, controlling the statistical properties of radiation at subwavelength scales should be of paramount importance in the design of miniaturized optical sources, detectors and sensors.
Identifer | oai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:etd-1274 |
Date | 01 January 2005 |
Creators | Apostol, Adela |
Publisher | STARS |
Source Sets | University of Central Florida |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Electronic Theses and Dissertations |
Page generated in 0.002 seconds