Return to search

Dual Role of Oxidative Stress in Head and Neck Cancer Chemotherapy: Cytotoxicity and Pro-survival Autophagy

Cancer cells are believed to exist in a condition of metabolic oxidative stress compared to normal cells because of inherent mitochondrial dysfunction. Cancer cells up regulate antioxidant defense mechanisms to combat the toxic effect of reactive oxygen species (ROS). Many anticancer agents block ROS detoxification mechanisms and utilize oxidative stress to cause cytotoxicity to cancer cells. However, ROS also up-regulate many pro-survival signaling pathways that may mediate resistance to chemotherapy. I hypothesize that ROS induces both cytotoxicity and pro-survival mechanisms in cells treated with chemotherapeutic agents such as the EGFR inhibitor erlotinib. This thesis explores how oxidative stress may induce both pro-survival and pro-death mechanisms in HNSCC cells and how this can be exploited to increase the cytotoxicity of erlotinib. The combined use of buthionine-[S,R]-sulfoximine, an inhibitor of glutathione and auranofin, an inhibitor of thioredoxin metabolism enhanced human head and neck cancer cell killing by a mechanism involving oxidative stress both in vitro and in vivo and sensitized cells to erlotinib in vitro. However, in other studies erlotinib as a single agent induced oxidative stress and this was mediated by NADPH oxidase 4 (NOX4). NOX4 mediated oxidative stress activated a process called autophagy which protected cancer cells from cytotoxic effect of erlotinib and inhibition of autophagy sensitized cells to erlotinib in vitro. These studies show that oxidative stress may have a dual role in cancer chemotherapy. ROS generated from various drug treatments can cause oxidative damage of cells culminating in cell death. However, it may also activate autophagy protecting cells against the stress and leading to decreased efficacy of the treatment. Hence inhibiting autophagy and hydroperoxide metabolism can be effective treatment modalities to enhance the cytotoxicity of erlotinib and achieve maximum therapeutic efficacy.

Identiferoai:union.ndltd.org:uiowa.edu/oai:ir.uiowa.edu:etd-4870
Date01 July 2013
CreatorsSobhakumari, Arya
ContributorsSimons-Burnett, Andrean
PublisherUniversity of Iowa
Source SetsUniversity of Iowa
LanguageEnglish
Detected LanguageEnglish
Typedissertation
Formatapplication/pdf
SourceTheses and Dissertations
RightsCopyright 2013 Arya Sobhakumari

Page generated in 0.0087 seconds