Return to search

Automated service negotiation between autonomous computational agents

Multi-agent systems are a new computational approach for solving real world, dynamic and open system problems. Problems are conceptualized as a collection of decentralised autonomous agents that collaborate to reach the overall solution. Because of the agents autonomy, their limited rationality, and the distributed nature of most real world problems, the key issue in multi-agent system research is how to model interactions between agents. Negotiation models have emerged as suitable candidates to solve this interaction problem due to their decentralised nature, emphasis on mutual selection of an action, and the prevalence of negotiation in real social systems. The central problem addressed in this thesis is the design and engineering of a negotiation model for autonomous agents for sharing tasks and/or resources. To solve this problem a negotiation protocol and a set of deliberation mechanisms are presented which together coordinate the actions of a multiple agent system. In more detail, the negotiation protocol constrains the action selection problem solving of the agents through the use of normative rules of interaction. These rules temporally order, according to the agents' roles, communication utterances by specifying both who can say what, as well as when. Specifically, the presented protocol is a repeated, sequential model where offers are iteratively exchanged. Under this protocol, agents are assumed to be fully committed to their utterances and utterances are private between the two agents. The protocol is distributed, symmetric, supports bi and/or multi-agent negotiation as well as distributive and integrative negotiation. In addition to coordinating the agent interactions through normative rules, a set of mechanisms are presented that coordinate the deliberation process of the agents during the ongoing negotiation. Whereas the protocol normatively describes the orderings of actions, the mechanisms describe the possible set of agent strategies in using the protocol. These strategies are captured by a negotiation architecture that is composed of responsive and deliberative decision mechanisms. Decision making with the former mechanism is based on a linear combination of simple functions called tactics, which manipulate the utility of deals. The latter mechanisms are subdivided into trade-off and issue manipulation mechanisms. The trade-off mechanism generates offers that manipulate the value, rather than the overall utility, of the offer. The issue manipulation mechanism aims to increase the likelihood of an agreement by adding and removing issues into the negotiation set. When taken together, these mechanisms represent a continuum of possible decision making capabilities: ranging from behaviours that exhibit greater awareness of environmental resources and less to solution quality, to behaviours that attempt to acquire a given solution quality independently of the resource consumption. The protocol and mechanisms are empirically evaluated and have been applied to real world task distribution problems in the domains of business process management and telecommunication management. The main contribution and novelty of this research are: i) a domain independent computational model of negotiation that agents can use to support a wide variety of decision making strategies, ii) an empirical evaluation of the negotiation model for a given agent architecture in a number of different negotiation environments, and iii) the application of the developed model to a number of target domains. An increased strategy set is needed because the developed protocol is less restrictive and less constrained than the traditional ones, thus supporting development of strategic interaction models that belong more to open systems. Furthermore, because of the combination of the large number of environmental possibilities and the size of the set of possible strategies, the model has been empirically investigated to evaluate the success of strategies in different environments. These experiments have facilitated the development of general guidelines that can be used by designers interested in developing strategic negotiating agents. The developed model is grounded from the requirement considerations from both the business process management and telecommunication application domains. It has also been successfully applied to five other real world scenarios.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:392695
Date January 2000
CreatorsFaratin, Peyman
PublisherQueen Mary, University of London
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://qmro.qmul.ac.uk/xmlui/handle/123456789/28945

Page generated in 0.0017 seconds