The idea of a Media Frame network (MFN) was proposed very recently for solving the explosively growing demand for end-to-end large file transfers. This networking method combines the advantage of high transmission speed from optical networks and flexibility and fast header parsing from electronic networks. The MFN is based on very large data units or media frames (MF) compared to IP packets. Due to the logical continuity, transporting data in a media frame network largely reduces the power consumption in the intermediate nodes and routers. Currently the backbone of media frame network has been studied. The remaining challenge is to devise a system solving the problem of transporting MFs through access networks (i.e., the last mile) connecting customers to the backbone networks. To our knowledge, no other research activity regarding this challenge has been reported. If this challenge is overcome and if the overall concept is accepted, the MFN could be a very important step in the evolution of the Internet.
This thesis focuses mainly on the access network. For the first time, a solution is proposed to establish the ability to transport media frames over a standard PON (e.g. Passive Optical Network) architecture. Because of the unique properties of the media frame network, the physical layer model and transport protocols must be rebuilt. Referring to the ITU-T G.987 recommendations, the physical layer is built based on the XGPON specification. In this thesis, the initialization protocols, bandwidth allocation plan, OLT-ONU (OLT: Optical Line Terminal, e.g. central office. ONU: Optical Network Unit, e.g. customer side box) negotiation protocols are designed. Different schemes for each protocol are proposed, with simulation support based on Omnet++. For the transmission of a 7GB file on average, different transparency degrees under different traffic conditions are compared, and the tradeoffs among essential factors are investigated. / Graduate
Identifer | oai:union.ndltd.org:uvic.ca/oai:dspace.library.uvic.ca:1828/3902 |
Date | 24 April 2012 |
Creators | Ge, Teng |
Contributors | Darcie, Thomas E. |
Source Sets | University of Victoria |
Language | English, English |
Detected Language | English |
Type | Thesis |
Rights | Available to the World Wide Web |
Page generated in 0.0017 seconds