This master’s thesis deals with designs and implementation of systems for music cover recognition. The introduction part is devoted to the calculation parameters from audio signal using Music Information Retrieval techniques. Subsequently, various forms of cover versions and musical aspects that cover versions share are defined. The thesis also deals in detail with the creation and distribution of a database of cover versions. Furthermore, the work presents methods and techniques for comparing and processing the calculated parameters. Attention is then paid to the OTI method, CSM calculation and methods dealing with parameter selection. The next part of the thesis is devoted to the design of systems for recognizing cover versions. Then there are compared systems already designed for recognizing cover versions. Furthermore, the thesis describes machine learning techniques and evaluation methods for evaluating the classification with a special emphasis on artificial neural networks. The last part of the thesis deals with the implementation of two systems in MATLAB and Python. These systems are then tested on the created database of cover versions.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:442587 |
Date | January 2021 |
Creators | Martinek, Václav |
Contributors | Zvončák, Vojtěch, Kiska, Tomáš |
Publisher | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0017 seconds