This thesis contributes toward the design of a reliable and energy-efficient transport system for Wireless Sensor Networks. Wireless Sensor Networks have emerged as a vital new area in networking research. In many Wireless Sensor Network systems, a common task of sensor nodes is to sense the environment and send the sensed data to a sink node. Thus, the effectiveness of a Wireless Sensor Network depends on how reliably the sensor nodes can deliver their sensed data to the sink. However, the sensor nodes are susceptible to loss for various reasons when there are dynamics in wireless transmission medium, environmental interference, battery depletion, or accidentally damage, etc. Therefore, assuring reliable data delivery between the sensor nodes and the sink in Wireless Sensor Networks is a challenging task. The primary contributions of this thesis include four parts. First, we design, implement, and evaluate a cross-layer communication protocol for reliable data transfer for data streaming applications in Wireless Sensor Networks. We employ reliable algorithms in each layer of the communication stack. At the MAC layer, a CSMA MAC protocol with an explicit hop-by-hop Acknowledgment loss recovery is employed. To ensure the end-to-end reliability, the maximum number of retransmissions are estimated and used at each sensor node. At the transport layer, an end-to-end Negative Acknowledgment with an aggregated positive Acknowledgment mechanism is used. By inspecting the sequence numbers on the packets, the sink can detect which packets were lost. In addition, to increase the robustness of the system, a watchdog process is implemented at both base station and sensor nodes, which enable them to power cycle when an unexpected fault occurs. We present extensive evaluations, including theoretical analysis, simulations, and experiments in the field based on Fleck-3 platform and the TinyOS operating system. The designed network system has been working in the field for over a year. The results show that our system is a promising solution to a sustainable irrigation system. Second, we present the design of a policy-based Sensor Reliability Management framework for Wireless Sensor Networks called SRM. SRM is based on hierarchical management architecture and on the policy-based network management paradigm. SRM allows the network administrators to interact with the Wireless Sensor Network via the management policies. SRM also provides a self-control capability to the network. This thesis restricts SRM to reliability management, but the same framework is also applicable for other management services by providing the management policies. Our experimental results show that SRM can offer sufficient reliability to the application users while reducing energy consumption by more than 50% compared to other approaches. Third, we propose an Energy-efficient and Reliable Transport Protocol called ERTP, which is designed for data streaming applications in Wireless Sensor Networks. ERTP is an adaptive transport protocol based on statistical reliability that ensures the number of data packets delivered to the sink exceeds the defined threshold while reducing the energy consumption. Using a statistical reliability metric when designing a reliable transport protocol guarantees the delivery of adequate information to the users, and reduces energy consumption when compared to the absolute reliability. ERTP uses hop-by-hop Implicit Acknowledgment with a dynamically updated retransmission timeout for packet loss recovery. In multihop wireless networks, the transmitter can overhear a forwarding transmission and interpret it as an Implicit Acknowledgment. By combining the statistical reliability and the hop-by-hop Implicit Acknowledgment loss recovery, ERTP can offer sufficient reliability to the application users with minimal energy expense. Our extensive simulations and experimental evaluations show that ERTP can reduce energy consumption by more than 45% when compared to the state-of- the-art protocol. Consequently, sensor nodes are more energy-efficient and the lifespan of the unattended Wireless Sensor Network is increased. In Wireless Sensor Networks, sensor node failures can create network partitions or coverage loss which can not be solved by providing reliability at higher layers of the protocol stack. In the final part of this thesis, we investigate the problem of maintaining the network connectivity and coverage when the sensor nodes are failed. We consider a hybrid Wireless Sensor Network where a subset of the nodes has the ability to move at a high energy expense. When a node has low remaining energy (dying node) but it is a critical node which constitutes the network such as a cluster head, it will seek a replacement. If a redundant node is located in the transmission range of the dying node and can fulfill the network connectivity and coverage requirement, it can be used for substitution. Otherwise, a protocol should be in place to relocate the redundant sensor node for replacement. We propose a distributed protocol for Mobile Sensor Relocation problem called Moser. Moser works in three phases. In the first phase, the dying node determines if network partition occurs, finds an available mobile node, and asks for replacement by using flooding algorithm. The dying node also decides the movement schedule of the available mobile node based on certain criteria. The second phase of the Moser protocol involves the actual movement of the mobile nodes to approach the location of the dying node. Finally, when the mobile node has reached the transmission of the dying node, it communicates to the dying nodes and moves to a desired location, where the network connectivity and coverage to the neighbors of the dying nodes are preserved.
Identifer | oai:union.ndltd.org:ADTP/258019 |
Date | January 2009 |
Creators | Le, Dinh Tuan, Computer Science & Engineering, Faculty of Engineering, UNSW |
Publisher | Publisher:University of New South Wales. Computer Science & Engineering |
Source Sets | Australiasian Digital Theses Program |
Language | English |
Detected Language | English |
Rights | http://unsworks.unsw.edu.au/copyright, http://unsworks.unsw.edu.au/copyright |
Page generated in 0.0017 seconds