Software Defined Networking (SDN) is revolutionizing the architecture and operation of computer networks and promises a more agile and cost-efficient network management. SDN centralizes the network control logic and separates the control plane from the data plane, thus enabling flexible management of networks. A network based on SDN consists of a data plane and a control plane. To assist management of devices and data flows, a network also has an independent monitoring plane. These coexisting network planes have various types of resources, such as bandwidth utilized to transmit monitoring data, energy spent to power data forwarding devices and computational resources to control a network. Unwise management, even abusive utilization of these resources lead to the degradation of the network performance and increase the Operating Expenditure (Opex) of the network owner. Conserving and protecting limited network resources is thus among the key requirements for efficient networking.
However, the heterogeneity of the network hardware and network traffic workloads expands the configuration space of SDN, making it a challenging task to operate a network efficiently. Furthermore, the existing approaches usually lack the capability to automatically adapt network configurations to handle network dynamics and diverse optimization requirements. Addtionally, a centralized SDN controller has to run in a protected environment against certain attacks. This thesis builds upon the centralized management capability of SDN, and uses cross-layer network optimizations to perform joint traffic engineering, e.g., routing, hardware and software configurations. The overall goal is to overcome the management complexities in conserving and protecting resources in multiple functional planes in SDN when facing network heterogeneities and system dynamics. This thesis presents four contributions: (1) resource-efficient network monitoring, (2) resource-efficient data forwarding, (3) using self-adaptive algorithms to improve network resource efficiency, and (4) mitigating abusive usage of resources for network controlling.
The first contribution of this thesis is a resource-efficient network monitoring solution. In this thesis, we consider one specific type of virtual network management function: flow packet inspection. This type of the network monitoring application requires to duplicate packets of target flows and send them to packet monitors for in-depth analysis. To avoid the competition for resources between the original data and duplicated data, the network operators can transmit the data flows through physically (e.g., different communication mediums) or virtually (e.g., distinguished network slices) separated channels having different resource consumption properties. We propose the REMO solution, namely Resource Efficient distributed Monitoring, to reduce the overall network resource consumption incurred by both types of data, via jointly considering the locations of the packet monitors, the selection of devices forking the data packets, and flow path scheduling strategies.
In the second contribution of this thesis, we investigate the resource efficiency problem in hybrid, server-centric data center networks equipped with both traditional wired connections (e.g., InfiniBand or Ethernet) and advanced high-data-rate wireless links (e.g., directional 60GHz wireless technology). The configuration space of hybrid SDN equipped with both wired and wireless communication technologies is massively large due to the complexity brought by the device heterogeneity. To tackle this problem, we present the ECAS framework to reduce the power consumption and maintain the network performance.
The approaches based on the optimization models and heuristic algorithms are considered as the traditional way to reduce the operation and facility resource consumption in SDN. These approaches are either difficult to directly solve or specific for a particular problem space. As the third contribution of this thesis, we investigates the approach of using Deep Reinforcement Learning (DRL) to improve the adaptivity of the management modules for network resource and data flow scheduling. The goal of the DRL agent in the SDN network is to reduce the power consumption of SDN networks without severely degrading the network performance.
The fourth contribution of this thesis is a protection mechanism based upon flow rate limiting to mitigate abusive usage of the SDN control plane resource. Due to the centralized architecture of SDN and its handling mechanism for new data flows, the network controller can be the failure point due to the crafted cyber-attacks, especially the Control-Plane- Saturation (CPS) attack. We proposes an In-Network Flow mAnagement Scheme (INFAS) to effectively reduce the generation of malicious control packets depending on the parameters configured for the proposed mitigation algorithm.
In summary, the contributions of this thesis address various unique challenges to construct resource-efficient and secure SDN. This is achieved by designing and implementing novel and intelligent models and algorithms to configure networks and perform network traffic engineering, in the protected centralized network controller.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:72444 |
Date | 13 October 2020 |
Creators | Li, Tao |
Contributors | Santini, Silvia, Strufe, Thorsten, Stiller, Burkhard, Groh, Rainer, Göhringer, Diana, Technische Universität Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Relation | 10.1109/TGCN.2019.2896298, 1573-0077, 10.1109/NOMS.2018.8406239, info:eu-repo/grantAgreement/Deutsche Forschungsgemeinschaft/SFB/SFB-1053//Multi-Mechanisms Adaptation for the Future Internet/MAKI, info:eu-repo/grantAgreement/Deutsche Forschungsgemeinschaft/SFB/SFB-912//Highly Adaptive Energy-Efficient Computing/HAEC |
Page generated in 0.0024 seconds