Return to search

COMPARISON OF PRE-TRAINED CONVOLUTIONAL NEURAL NETWORK PERFORMANCE ON GLIOMA CLASSIFICATION

Gliomas are an aggressive class of brain tumors that are associated with a better prognosis at a lower grade level. Effective differentiation and classification are imperative for early treatment. MRI scans are a popular medical imaging modality to detect and diagnosis brain tumors due to its capability to non-invasively highlight the tumor region. With the rise of deep learning, researchers have used convolution neural networks for classification purposes in this domain, specifically pre-trained networks to reduce computational costs. However, with various MRI modalities, MRI machines, and poor image scan quality cause different network structures to have different performance metrics. Each pre-trained network is designed with a different structure that allows robust results given specific problem conditions. This thesis aims to cover the gap in the literature to compare the performance of popular pre-trained networks on a controlled dataset that is different than the network trained domain. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2020. / FAU Electronic Theses and Dissertations Collection

Identiferoai:union.ndltd.org:fau.edu/oai:fau.digital.flvc.org:fau_42587
ContributorsAndrews, Whitney Angelica Johanna (author), Furht, Borko (Thesis advisor), Florida Atlantic University (Degree grantor), Department of Computer and Electrical Engineering and Computer Science, College of Engineering and Computer Science
PublisherFlorida Atlantic University
Source SetsFlorida Atlantic University
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation, Text
Format66 p., application/pdf
RightsCopyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder., http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0019 seconds