Highly organised and differentiated neural circuits form and unite to link the cortex with the basal ganglia and thalamus to mediate movement, cognition and behaviour. Previous assertions that the basal ganglia primarily acted to filter cortical information to facilitate motor outputs only have since given way to an understanding of the basal ganglia as a relay and gating structure with functionally and structurally segregated inputs, functions and outputs. Thus, cortical – basal ganglia circuits can be segregated into three broadly separable functional domains mediating motor (primary and supplementary motor cortex (SMA) and putamen), cognitive (dorsolateral prefrontal cortex (dlPFC) and caudate), and limbic (ventromedial prefrontal cortex and ventral striatum (VS)) processes. In addition, cognitive and behavioural programs that pass through the cortical – basal ganglia circuitry can be subject to filtering by the subthalamic nucleus (STN), which receives direct projections from the cortex. This work first demonstrated the functional organisation of segregated intrinsic cortical – basal ganglia circuits in humans, alongside a detailed map of functional subzones within STN, a small and technically inaccessible midbrain structure. The behavioural relevance of the defined cortical – basal ganglia circuits was investigated by examining the cognitive constructs of impulsivity and compulsivity. Waiting impulsivity, a tendency towards rapid premature responses that has been associated with compulsive drug use, was associated with connectivity between limbic regions including subgenual anterior cingulate cortex, VS and STN. However, motor impulsivity, in the form of stopping ability, was associated with motoric regions including pre-SMA and STN. Compulsivity was captured as deficits in: reversal learning, implicating lateral orbitofrontal cortex; attentional shifting, implicating dlPFC; and habit learning, implicating SMA. Neural circuit changes were also examined in individuals with alcohol dependence and binge drinkers. Waiting impulsivity was elevated in both groups and the functional connectivity, microstructural integrity and anatomical connectivity of the neural circuit underlying waiting impulsivity were associated with problematic drinking behaviours in both groups. Together, this work establishes that discrete functional subzones of small subcortical regions can be differentiated in humans and that their behavioural correlates can be similarly mapped. The definition of intrinsic network architecture underlying a particular behaviour and the demonstration its disturbance in psychiatric groups will crucially inform the development of future diagnostic and therapeutic models.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:725622 |
Date | January 2017 |
Creators | Morris, Laurel Sophia |
Contributors | Robbins, Trevor ; Voon, Valerie |
Publisher | University of Cambridge |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | https://www.repository.cam.ac.uk/handle/1810/268015 |
Page generated in 0.0017 seconds