Return to search

On the Synthesis of fuzzy neural systems.

by Chung, Fu Lai. / Thesis (Ph.D.)--Chinese University of Hong Kong, 1995. / Includes bibliographical references (leaves 166-174). / ACKNOWLEDGEMENT --- p.iii / ABSTRACT --- p.iv / Chapter 1. --- Introduction --- p.1 / Chapter 1.1 --- Integration of Fuzzy Systems and Neural Networks --- p.1 / Chapter 1.2 --- Objectives of the Research --- p.7 / Chapter 1.2.1 --- Fuzzification of Competitive Learning Algorithms --- p.7 / Chapter 1.2.2 --- Capacity Analysis of FAM and FRNS Models --- p.8 / Chapter 1.2.3 --- Structure and Parameter Identifications of FRNS --- p.9 / Chapter 1.3 --- Outline of the Thesis --- p.9 / Chapter 2. --- A Fuzzy System Primer --- p.11 / Chapter 2.1 --- Basic Concepts of Fuzzy Sets --- p.11 / Chapter 2.2 --- Fuzzy Set-Theoretic Operators --- p.15 / Chapter 2.3 --- "Linguistic Variable, Fuzzy Rule and Fuzzy Inference" --- p.19 / Chapter 2.4 --- Basic Structure of a Fuzzy System --- p.22 / Chapter 2.4.1 --- Fuzzifier --- p.22 / Chapter 2.4.2 --- Fuzzy Knowledge Base --- p.23 / Chapter 2.4.3 --- Fuzzy Inference Engine --- p.24 / Chapter 2.4.4 --- Defuzzifier --- p.28 / Chapter 2.5 --- Concluding Remarks --- p.29 / Chapter 3. --- Categories of Fuzzy Neural Systems --- p.30 / Chapter 3.1 --- Introduction --- p.30 / Chapter 3.2 --- Fuzzification of Neural Networks --- p.31 / Chapter 3.2.1 --- Fuzzy Membership Driven Models --- p.32 / Chapter 3.2.2 --- Fuzzy Operator Driven Models --- p.34 / Chapter 3.2.3 --- Fuzzy Arithmetic Driven Models --- p.35 / Chapter 3.3 --- Layered Network Implementation of Fuzzy Systems --- p.36 / Chapter 3.3.1 --- Mamdani's Fuzzy Systems --- p.36 / Chapter 3.3.2 --- Takagi and Sugeno's Fuzzy Systems --- p.37 / Chapter 3.3.3 --- Fuzzy Relation Based Fuzzy Systems --- p.38 / Chapter 3.4 --- Concluding Remarks --- p.40 / Chapter 4. --- Fuzzification of Competitive Learning Networks --- p.42 / Chapter 4.1 --- Introduction --- p.42 / Chapter 4.2 --- Crisp Competitive Learning --- p.44 / Chapter 4.2.1 --- Unsupervised Competitive Learning Algorithm --- p.46 / Chapter 4.2.2 --- Learning Vector Quantization Algorithm --- p.48 / Chapter 4.2.3 --- Frequency Sensitive Competitive Learning Algorithm --- p.50 / Chapter 4.3 --- Fuzzy Competitive Learning --- p.50 / Chapter 4.3.1 --- Unsupervised Fuzzy Competitive Learning Algorithm --- p.53 / Chapter 4.3.2 --- Fuzzy Learning Vector Quantization Algorithm --- p.54 / Chapter 4.3.3 --- Fuzzy Frequency Sensitive Competitive Learning Algorithm --- p.58 / Chapter 4.4 --- Stability of Fuzzy Competitive Learning --- p.58 / Chapter 4.5 --- Controlling the Fuzziness of Fuzzy Competitive Learning --- p.60 / Chapter 4.6 --- Interpretations of Fuzzy Competitive Learning Networks --- p.61 / Chapter 4.7 --- Simulation Results --- p.64 / Chapter 4.7.1 --- Performance of Fuzzy Competitive Learning Algorithms --- p.64 / Chapter 4.7.2 --- Performance of Monotonically Decreasing Fuzziness Control Scheme --- p.74 / Chapter 4.7.3 --- Interpretation of Trained Networks --- p.76 / Chapter 4.8 --- Concluding Remarks --- p.80 / Chapter 5. --- Capacity Analysis of Fuzzy Associative Memories --- p.82 / Chapter 5.1 --- Introduction --- p.82 / Chapter 5.2 --- Fuzzy Associative Memories (FAMs) --- p.83 / Chapter 5.3 --- Storing Multiple Rules in FAMs --- p.87 / Chapter 5.4 --- A High Capacity Encoding Scheme for FAMs --- p.90 / Chapter 5.5 --- Memory Capacity --- p.91 / Chapter 5.6 --- Rule Modification --- p.93 / Chapter 5.7 --- Inference Performance --- p.99 / Chapter 5.8 --- Concluding Remarks --- p.104 / Chapter 6. --- Capacity Analysis of Fuzzy Relational Neural Systems --- p.105 / Chapter 6.1 --- Introduction --- p.105 / Chapter 6.2 --- Fuzzy Relational Equations and Fuzzy Relational Neural Systems --- p.107 / Chapter 6.3 --- Solving a System of Fuzzy Relational Equations --- p.109 / Chapter 6.4 --- New Solvable Conditions --- p.112 / Chapter 6.4.1 --- Max-t Fuzzy Relational Equations --- p.112 / Chapter 6.4.2 --- Min-s Fuzzy Relational Equations --- p.117 / Chapter 6.5 --- Approximate Resolution --- p.119 / Chapter 6.6 --- System Capacity --- p.123 / Chapter 6.7 --- Inference Performance --- p.125 / Chapter 6.8 --- Concluding Remarks --- p.127 / Chapter 7. --- Structure and Parameter Identifications of Fuzzy Relational Neural Systems --- p.129 / Chapter 7.1 --- Introduction --- p.129 / Chapter 7.2 --- Modelling Nonlinear Dynamic Systems by Fuzzy Relational Equations --- p.131 / Chapter 7.3 --- A General FRNS Identification Algorithm --- p.138 / Chapter 7.4 --- An Evolutionary Computation Approach to Structure and Parameter Identifications --- p.139 / Chapter 7.4.1 --- Guided Evolutionary Simulated Annealing --- p.140 / Chapter 7.4.2 --- An Evolutionary Identification (EVIDENT) Algorithm --- p.143 / Chapter 7.5 --- Simulation Results --- p.146 / Chapter 7.6 --- Concluding Remarks --- p.158 / Chapter 8. --- Conclusions --- p.159 / Chapter 8.1 --- Summary of Contributions --- p.160 / Chapter 8.1.1 --- Fuzzy Competitive Learning --- p.160 / Chapter 8.1.2 --- Capacity Analysis of FAM and FRNS --- p.160 / Chapter 8.1.3 --- Numerical Identification of FRNS --- p.161 / Chapter 8.2 --- Further Investigations --- p.162 / Appendix A Publication List of the Candidate --- p.164 / BIBLIOGRAPHY --- p.166

Identiferoai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_318327
Date January 1995
ContributorsChung, Fu Lai., Chinese University of Hong Kong Graduate School. Division of Electronic Engineering.
PublisherChinese University of Hong Kong
Source SetsThe Chinese University of Hong Kong
LanguageEnglish
Detected LanguageEnglish
TypeText, bibliography
Formatprint, viii, 174 leaves : ill. ; 30 cm.
RightsUse of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Page generated in 0.0019 seconds