Return to search

Application of Cultured Neuronal Networks for Use as Biological Sensors in Water Toxicology and Lipid Signaling.

This dissertation research explored the capabilities of neuronal networks grown on substrate integrated microelectrode arrays in vitro to be applied to toxicological research and lipid signaling. Chapter 1 details the effects of chlorine on neuronal network spontaneous electrical activity and pharmacological sensitivity. This study demonstrates that neuronal networks can maintain baseline spontaneous activity, and respond normally to pharmacological manipulations in the present of three times the chlorine present in drinking water. The findings suggest that neuronal networks may be used as biological sensors to monitor the quality of water and the presence of novel toxicants that cannot be detected by conventional sensors. Chapter 2 details the neuromodulatory effects of N-acylethanolamides (NAEs) on the spontaneous electrical activity of neuronal networks. NAEs are a group of lipids that can mimic the effects of marijuana and can be derived from a variety of plant sources including soy lecithin. The most prominent NAEs in soy lecithin, palmitoylethanolamide (PEA) and linoleoylethanolamide (LEA), were tested individually and were found to significantly inhibit neuronal spiking and bursting activity. These effects were potentiated by a mixture of NAEs as found in a HPLC enriched fraction from soy lecithin. Cannabinoid receptor-1 (CB1-R) antagonists and other cannabinoid pathway modulators indicated that the CB1-R was not directly involved in the effects of NAEs, but that enzymatic degradation and cellular uptake were more likely targets. The results demonstrate that neuronal networks may also be a viable platform for the elucidation of biochemical pathways and drug mechanisms of action.

Identiferoai:union.ndltd.org:unt.edu/info:ark/67531/metadc5557
Date08 1900
CreatorsDian, Emese Emöke
ContributorsGross, Guenter W., Chapman, Kent D., Fuchs, Jannon L., Schwark, Harris, Pirtle, Robert M.
PublisherUniversity of North Texas
Source SetsUniversity of North Texas
LanguageEnglish
Detected LanguageEnglish
TypeThesis or Dissertation
FormatText
RightsUse restricted to UNT Community (strictly enforced), Copyright, Dian, Emese Emöke, Copyright is held by the author, unless otherwise noted. All rights reserved.

Page generated in 0.0025 seconds