by Chung, Fu Lai. / Thesis (Ph.D.)--Chinese University of Hong Kong, 1995. / Includes bibliographical references (leaves 166-174). / ACKNOWLEDGEMENT --- p.iii / ABSTRACT --- p.iv / Chapter 1. --- Introduction --- p.1 / Chapter 1.1 --- Integration of Fuzzy Systems and Neural Networks --- p.1 / Chapter 1.2 --- Objectives of the Research --- p.7 / Chapter 1.2.1 --- Fuzzification of Competitive Learning Algorithms --- p.7 / Chapter 1.2.2 --- Capacity Analysis of FAM and FRNS Models --- p.8 / Chapter 1.2.3 --- Structure and Parameter Identifications of FRNS --- p.9 / Chapter 1.3 --- Outline of the Thesis --- p.9 / Chapter 2. --- A Fuzzy System Primer --- p.11 / Chapter 2.1 --- Basic Concepts of Fuzzy Sets --- p.11 / Chapter 2.2 --- Fuzzy Set-Theoretic Operators --- p.15 / Chapter 2.3 --- "Linguistic Variable, Fuzzy Rule and Fuzzy Inference" --- p.19 / Chapter 2.4 --- Basic Structure of a Fuzzy System --- p.22 / Chapter 2.4.1 --- Fuzzifier --- p.22 / Chapter 2.4.2 --- Fuzzy Knowledge Base --- p.23 / Chapter 2.4.3 --- Fuzzy Inference Engine --- p.24 / Chapter 2.4.4 --- Defuzzifier --- p.28 / Chapter 2.5 --- Concluding Remarks --- p.29 / Chapter 3. --- Categories of Fuzzy Neural Systems --- p.30 / Chapter 3.1 --- Introduction --- p.30 / Chapter 3.2 --- Fuzzification of Neural Networks --- p.31 / Chapter 3.2.1 --- Fuzzy Membership Driven Models --- p.32 / Chapter 3.2.2 --- Fuzzy Operator Driven Models --- p.34 / Chapter 3.2.3 --- Fuzzy Arithmetic Driven Models --- p.35 / Chapter 3.3 --- Layered Network Implementation of Fuzzy Systems --- p.36 / Chapter 3.3.1 --- Mamdani's Fuzzy Systems --- p.36 / Chapter 3.3.2 --- Takagi and Sugeno's Fuzzy Systems --- p.37 / Chapter 3.3.3 --- Fuzzy Relation Based Fuzzy Systems --- p.38 / Chapter 3.4 --- Concluding Remarks --- p.40 / Chapter 4. --- Fuzzification of Competitive Learning Networks --- p.42 / Chapter 4.1 --- Introduction --- p.42 / Chapter 4.2 --- Crisp Competitive Learning --- p.44 / Chapter 4.2.1 --- Unsupervised Competitive Learning Algorithm --- p.46 / Chapter 4.2.2 --- Learning Vector Quantization Algorithm --- p.48 / Chapter 4.2.3 --- Frequency Sensitive Competitive Learning Algorithm --- p.50 / Chapter 4.3 --- Fuzzy Competitive Learning --- p.50 / Chapter 4.3.1 --- Unsupervised Fuzzy Competitive Learning Algorithm --- p.53 / Chapter 4.3.2 --- Fuzzy Learning Vector Quantization Algorithm --- p.54 / Chapter 4.3.3 --- Fuzzy Frequency Sensitive Competitive Learning Algorithm --- p.58 / Chapter 4.4 --- Stability of Fuzzy Competitive Learning --- p.58 / Chapter 4.5 --- Controlling the Fuzziness of Fuzzy Competitive Learning --- p.60 / Chapter 4.6 --- Interpretations of Fuzzy Competitive Learning Networks --- p.61 / Chapter 4.7 --- Simulation Results --- p.64 / Chapter 4.7.1 --- Performance of Fuzzy Competitive Learning Algorithms --- p.64 / Chapter 4.7.2 --- Performance of Monotonically Decreasing Fuzziness Control Scheme --- p.74 / Chapter 4.7.3 --- Interpretation of Trained Networks --- p.76 / Chapter 4.8 --- Concluding Remarks --- p.80 / Chapter 5. --- Capacity Analysis of Fuzzy Associative Memories --- p.82 / Chapter 5.1 --- Introduction --- p.82 / Chapter 5.2 --- Fuzzy Associative Memories (FAMs) --- p.83 / Chapter 5.3 --- Storing Multiple Rules in FAMs --- p.87 / Chapter 5.4 --- A High Capacity Encoding Scheme for FAMs --- p.90 / Chapter 5.5 --- Memory Capacity --- p.91 / Chapter 5.6 --- Rule Modification --- p.93 / Chapter 5.7 --- Inference Performance --- p.99 / Chapter 5.8 --- Concluding Remarks --- p.104 / Chapter 6. --- Capacity Analysis of Fuzzy Relational Neural Systems --- p.105 / Chapter 6.1 --- Introduction --- p.105 / Chapter 6.2 --- Fuzzy Relational Equations and Fuzzy Relational Neural Systems --- p.107 / Chapter 6.3 --- Solving a System of Fuzzy Relational Equations --- p.109 / Chapter 6.4 --- New Solvable Conditions --- p.112 / Chapter 6.4.1 --- Max-t Fuzzy Relational Equations --- p.112 / Chapter 6.4.2 --- Min-s Fuzzy Relational Equations --- p.117 / Chapter 6.5 --- Approximate Resolution --- p.119 / Chapter 6.6 --- System Capacity --- p.123 / Chapter 6.7 --- Inference Performance --- p.125 / Chapter 6.8 --- Concluding Remarks --- p.127 / Chapter 7. --- Structure and Parameter Identifications of Fuzzy Relational Neural Systems --- p.129 / Chapter 7.1 --- Introduction --- p.129 / Chapter 7.2 --- Modelling Nonlinear Dynamic Systems by Fuzzy Relational Equations --- p.131 / Chapter 7.3 --- A General FRNS Identification Algorithm --- p.138 / Chapter 7.4 --- An Evolutionary Computation Approach to Structure and Parameter Identifications --- p.139 / Chapter 7.4.1 --- Guided Evolutionary Simulated Annealing --- p.140 / Chapter 7.4.2 --- An Evolutionary Identification (EVIDENT) Algorithm --- p.143 / Chapter 7.5 --- Simulation Results --- p.146 / Chapter 7.6 --- Concluding Remarks --- p.158 / Chapter 8. --- Conclusions --- p.159 / Chapter 8.1 --- Summary of Contributions --- p.160 / Chapter 8.1.1 --- Fuzzy Competitive Learning --- p.160 / Chapter 8.1.2 --- Capacity Analysis of FAM and FRNS --- p.160 / Chapter 8.1.3 --- Numerical Identification of FRNS --- p.161 / Chapter 8.2 --- Further Investigations --- p.162 / Appendix A Publication List of the Candidate --- p.164 / BIBLIOGRAPHY --- p.166
Identifer | oai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_318327 |
Date | January 1995 |
Contributors | Chung, Fu Lai., Chinese University of Hong Kong Graduate School. Division of Electronic Engineering. |
Publisher | Chinese University of Hong Kong |
Source Sets | The Chinese University of Hong Kong |
Language | English |
Detected Language | English |
Type | Text, bibliography |
Format | print, viii, 174 leaves : ill. ; 30 cm. |
Rights | Use of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/) |
Page generated in 0.0021 seconds