Return to search

Initialising neural networks with prior knowledge

This thesis explores the relationship between two classification models: decision trees and multilayer perceptrons.
Decision trees carve up databases into box-shaped regions, and make predictions based on the majority class in each box. They are quick to build and relatively easy to interpret. Multilayer perceptrons (MLPs) are often more accurate than decision trees, because they are able to use soft, curved, arbitrarily oriented decision boundaries. Unfortunately MLPs typically require a great deal of effort to determine a good number and arrangement of neural units, and then require many passes through the database to determine a good set of connection weights. The cost of creating and training an MLP is thus hundreds of times greater than the cost of creating a decision tree, for perhaps only a small gain in accuracy.
The following scheme is proposed for reducing the computational cost of creating and training MLPs. First, build and prune a decision tree to generate prior knowledge of the database. Then, use that knowledge to determine the initial architecture and connection weights of an MLP. Finally, use a training algorithm to refine the knowledge now embedded in the MLP. This scheme has two potential advantages: a suitable neural network architecture is determined very quickly, and training should require far fewer passes through the data.
In this thesis, new algorithms for initialising MLPs from decision trees are developed. The algorithms require just one traversal of a decision tree, and produce four-layer MLPs with the same number of hidden units as there are nodes in the tree. The resulting MLPs can be shown to reach a state more accurate than the decision trees that initialised them, in fewer training epochs than a standard MLP. Employing this approach typically results in MLPs that are just as accurate as standard MLPs, and an order of magnitude cheaper to train.

Identiferoai:union.ndltd.org:ADTP/217709
Date January 2007
CreatorsRountree, Nathan, n/a
PublisherUniversity of Otago. Department of Computer Science
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
Rightshttp://policy01.otago.ac.nz/policies/FMPro?-db=policies.fm&-format=viewpolicy.html&-lay=viewpolicy&-sortfield=Title&Type=Academic&-recid=33025&-find), Copyright Nathan Rountree

Page generated in 0.0015 seconds