Return to search

Uppdelning av ett artificiellt neuralt nätverk

Artificiella neurala nätverk (ANN) har många användningsområden inom datavetenskap. Några av dessa är mönsterigenkänning, robotik, processkontroll, optimering och spel. Detta examensarbete kommer att handla om hur en alternativ lösning på den traditionella arkitekturen av hur ett neuralnät kan se ut. Jag kommer att undersöka om man kan ta ett stort och komplext neuralnät och bryta ned detta till mindre neuralnät utan att förlora kvaliteten på botarna i en spelmiljö kallad Open Nero. Detta för att försöka minska beräkningshastigheten av neuralnäten och förhoppningsvis även göra så botarna lär sig ett bra beteende snabbare. Mitt examensarbete kommer att visa att min lösning av arkitekturen för ett neuralt nätverk inte fungerar speciellt bra då botarna inte lärde sig tillräckligt fort. En fördel med min arkitektur är dock att den är något snabbare än originalets i exekveringshastighet.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:bth-5667
Date January 2012
CreatorsEklund, Björn
PublisherBlekinge Tekniska Högskola, Sektionen för datavetenskap och kommunikation
Source SetsDiVA Archive at Upsalla University
LanguageSwedish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0022 seconds