Return to search

Neuroinflammatory conditions upregulate Piezo1 mechanosensitive ion channel in astrocytes

Neuroinflammation is prevalent in neurodegenerative diseases and plays a significant role in the central nervous system (CNS) innate immunity, which is the body’s first line of defense mechanisms against invading pathogens and injuries to maintain homeostasis. However, in neurodegenerative diseases, neuroinflammation becomes persistent alongside the subsequent damage to nearby neurons and affects CNS-resident immune glial cells, such as microglia and astrocytes. Accumulating evidence suggests that neuroinflammation is mainly characterized by the excessive activation of glial cells, thus causing abnormal changes in their microenvironment and release soluble factors that can promote or inhibit neuroinflammation. Currently, there is no effective treatment to cure these progressive neurological disorders. Therefore, it is critical to understand how neuroinflammation affects astroglia cell function and their biomechanical properties that change their behavior throughout disease progression. Astrocytes are the most predominant glial cell in the CNS and are critical in the development and maintenance of neuroinflammatory disorders. To date, very little is known regarding the role and specific function of Piezo1 mechanosensitive ion channel (MSC) in the CNS. Recently, Piezo1 expression was found to be upregulated in Lipopolysaccharide (LPS)-induced neuroinflammation in mouse astrocyte cultures. However, it is unknown whether the aberrant mechanical environment in astrocytes interplay with the mechanosensory function of Piezo1 and its current activity in neuroinflammatory conditions. In this study, we investigated Piezo1 mechanosensitive ionic currents by performing in vitro patch-clamp electrophysiology and calcium imaging. Our preliminary studies revealed that astrocytes derived from the mouse cerebellum stimulated with LPS or Piezo1 agonist, Yoda1, increased Ca2+ influx and further augmented when treated concurrently. We also found that electrophysiology recordings showed changes in mechanosensitive ionic currents and were comparable with our calcium imaging data indicating that MSCs are involved in neuroinflammation. Therefore, we postulated that Piezo1, a non-selective cation MSC that opens in response to mechanical force is a key mechanosensor involved in neuroinflammation by altered mechanical signals in C8-S astrocytes. Using an in vitro system of Mouse C8-S (Astrocyte type II clone), the goal of this study was to investigate if neuroinflammatory conditions upregulate Piezo1 calcium influx and current activity. We show that astrocytic Piezo1 regulates mechanotransducive release of ATP by controlling the mechanically induced calcium influx and current activation in LPS-induced astrocytes. Additionally, Piezo1 antagonist, GsMTx4 and Piezo1 siRNA significantly reduced the LPS-induced current, indicating that Piezo1 is involved in neuroinflammation. Our findings demonstrate that the activity of Piezo1 stimulated by neuroinflammatory conditions may be significant for the development of therapeutics to prevent or treat neuroinflammatory disorders and diseases.

Identiferoai:union.ndltd.org:siu.edu/oai:opensiuc.lib.siu.edu:theses-3917
Date01 December 2021
CreatorsJayasi, Jazmine
PublisherOpenSIUC
Source SetsSouthern Illinois University Carbondale
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses

Page generated in 0.0018 seconds