Wong, Siu Lun. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2007. / Includes bibliographical references (leaves 129-141). / Abstracts in English and Chinese. / Abstract --- p.i / Abstract (Chinese version) --- p.iii / Acknowledgements --- p.iv / List of Abbreviations --- p.v / List of Tables --- p.vii / List of Figures --- p.viii / Chapter 1. --- INTRODUCTION / Chapter 1.1 --- Neurodegenerative disorders - a brief overview --- p.1 / Chapter 1.2 --- Polyglutamine diseases --- p.2 / Chapter 1.3 --- Microscopically visible polyglutamine protein aggregates and its relation to toxicity --- p.7 / Chapter 1.4 --- Polyglutamine protein conformers and their relation to toxicity --- p.10 / Chapter 1.5 --- Modeling polyglutamine diseases in Drosophila / Chapter 1.5.1 --- GAL4/UAS spatial transgene expression system in Drosophila --- p.14 / Chapter 1.5.2 --- Temporal control of GAL4/UAS transgene expression system in Drosophila --- p.16 / Chapter 1.5.3 --- Drosophila as a model to study human pathologies --- p.19 / Chapter 1.5.4 --- Drosophila as a model to study polyglutamine diseases --- p.21 / Chapter 1.6 --- Aims of study --- p.26 / Chapter 2. --- MATERIALS AND METHODS / Chapter 2.1 --- Drosophila culture and manipulation / Chapter 2.1.1 --- Drosophila culture --- p.27 / Chapter 2.1.2 --- Phenotypic examination of adult external eye degeneration --- p.27 / Chapter 2.1.3 --- Pseudopupil assay of adult retinal degeneration and observation of green fluorescent protein in adult eyes --- p.28 / Chapter 2.2 --- Semi-quantitative Reverse Transcription-Polymerase Chain Reaction / Chapter 2.2.1 --- RNA extraction from adult Drosophila heads --- p.30 / Chapter 2.2.2 --- DNase treatment of extracted RNA --- p.31 / Chapter 2.2.3 --- Reverse transcription-Polymerase Chain Reaction (RT-PCR) --- p.31 / Chapter 2.2.4 --- Agarose gel electrophoresis --- p.33 / Chapter 2.3 --- Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE) / Chapter 2.3.1 --- Protein extraction from adult Drosophila heads --- p.33 / Chapter 2.3.2 --- Preparation of SDS-polyacrylamide gel and electrophoresis --- p.34 / Chapter 2.3.3 --- Western blotting --- p.35 / Chapter 2.3.4 --- Immunodetection --- p.36 / Chapter 2.4 --- Immunoprecipitation --- p.38 / Chapter 2.5 --- Filter retardation assay --- p.39 / Chapter 2.6 --- Isolation and solubilization of SDS-insoluble protein --- p.40 / Chapter 2.7 --- Sucrose gradient sedimentation --- p.41 / Chapter 2.8 --- Preparation of Drosophila tissues for immunofluorescence analysis / Chapter 2.8.1 --- Dissection and immunostaining of Drosophila larval imaginal eye discs --- p.42 / Chapter 2.8.2 --- Cryosectioning and immunostaining of adult Drosophila heads --- p.44 / Chapter 2.9 --- Atomic force microscopy --- p.47 / Chapter 2.10 --- Reagents and buffers / Chapter 2.10.1 --- Reagents for Drosophila culture --- p.48 / Chapter 2.10.2 --- Reagents for RT-PCR --- p.52 / Chapter 2.10.3 --- Reagents for SDS-PAGE --- p.54 / Chapter 2.10.4 --- Reagents for immunoprecipitation --- p.57 / Chapter 2.10.5 --- Reagents for filter retardation assay --- p.57 / Chapter 2.10.6 --- Reagents for isolation and solubilization of SDS-insoluble protein --- p.58 / Chapter 2.10.7 --- Reagents for sucrose gradient sedimentation --- p.58 / Chapter 2.10.8 --- Reagents for immunofluorescence --- p.59 / Chapter 3. --- RESULTS / Chapter 3.1 --- Establishment of an inducible transgenic Drosophila model of polyglutamine diseases / Chapter 3.1.1 --- Introduction --- p.60 / Chapter 3.1.2 --- Results / Chapter 3.1.2.1 --- GAL80ts-mediated inducible expression of expanded polyglutamine protein in Drosophila / Chapter 3.1.2.1.1 --- GAL80ts controls GAL4/UAS-mediated polyQ protein expression --- p.61 / Chapter 3.1.2.1.2 --- Inducible expression of SDS-soluble expanded polyglutamine protein --- p.64 / Chapter 3.1.2.1.3 --- Inducible expression of expanded polyglutamine protein accumulates gradually in form of SDS-insoluble protein --- p.66 / Chapter 3.1.2.1.4 --- Inducible expression of expanded polyglutamine protein results in progressive accumulation of microscopically visible aggregates --- p.68 / Chapter 3.1.2.2 --- Inducible expression of expanded polyglutamine protein causes late-onset progressive neuronal degeneration in Drosophila / Chapter 3.1.2.2.1 --- Inducible expression of expanded polyglutamine protein leads to late-onset progressive deterioration of photoreceptor neurons --- p.68 / Chapter 3.1.2.2.2 --- Inducible expression of expanded polyglutamine protein neither causes external eye degenerative phenotype nor disrupts gross retinal morphology despite deterioration of photoreceptor neurons --- p.72 / Chapter 3.1.2.3 --- Co-expression of caspase inhibitor P35 suppresses polyglutamine-induced neuronal degeneration --- p.72 / Chapter 3.1.2.4 --- Co-expression of molecular chaperone Hsp70 suppresses polyglutamine-induced neuronal degeneration --- p.74 / Chapter 3.1.2.5 --- Inducible expression of expanded polyglutamine protein results in biphasic expression of molecular chaperone Hsp70 in Drosophila --- p.76 / Chapter 3.1.3 --- Discussion --- p.76 / Chapter 3.2 --- Involvement of microscopically visible polyglutamine aggregates in neurodegeneration / Chapter 3.2.1 --- Introduction --- p.83 / Chapter 3.2.2 --- Results / Chapter 3.2.2.1 --- Effect of Hsc70-K71S on microscopically visible polyglutamine aggregates and neuronal degeneration / Chapter 3.2.2.1.1 --- Co-expression of Hsc70-K71S reduces the level of microscopically visible polyglutamine aggregates --- p.83 / Chapter 3.2.2.1.2 --- Co-expression of Hsc70-K71S does not alter polyglutamine transgene expression --- p.84 / Chapter 3.2.2.1.3 --- Co-expression of Hsc70-K71S does not modify polyglutamine-induced neuronal degeneration --- p.87 / Chapter 3.2.2.2 --- Microscopically visible polyglutamine aggregates do not correlate with neuronal degeneration --- p.90 / Chapter 3.2.3 --- Discussion --- p.93 / Chapter 3.3 --- Detection of small SDS-insoluble expanded polyglutamine protein species and its association with neurodegeneration / Chapter 3.3.1 --- Introduction --- p.97 / Chapter 3.3.2 --- Results / Chapter 3.3.2.1 --- Accumulation of SDS-soluble expanded polyglutamine protein does not correlate with neuronal degeneration --- p.98 / Chapter 3.3.2.2 --- Identification of small SDS-insoluble expanded polyglutamine protein species / Chapter 3.3.2.2.1 --- Accumulation of total SDS-insoluble expanded polyglutamine protein positively correlates with progressive neuronal degeneration --- p.99 / Chapter 3.3.2.2.2 --- Accumulation of large SDS-insoluble expanded polyglutamine protein does not correlate with neuronal degeneration --- p.99 / Chapter 3.3.2.2.3 --- Accumulation of small SDS-insoluble expanded polyglutamine protein correlates with neuronal degeneration --- p.104 / Chapter 3.3.3 --- Discussion --- p.107 / Chapter 3.4 --- Biophysical characterization of small SDS-insoluble expanded polyglutamine protein species / Chapter 3.4.1 --- Introduction --- p.109 / Chapter 3.4.2 --- Results / Chapter 3.4.2.1 --- Separation of expanded polyglutamine protein species by sucrose gradient sedimentation --- p.110 / Chapter 3.4.2.2 --- Morphological studies of small SDS-insoluble expanded polyglutamine protein species by atomic force microscopy --- p.112 / Chapter 3.4.3 --- Discussion --- p.118 / Chapter 4. --- GENERAL DISCUSSION --- p.124 / Chapter 5. --- CONCLUSION --- p.127 / Chapter 6. --- REFERENCES --- p.129
Identifer | oai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_325947 |
Date | January 2007 |
Contributors | Wong, Siu Lun., Chinese University of Hong Kong Graduate School. Division of Molecular Biotechnology. |
Source Sets | The Chinese University of Hong Kong |
Language | English, Chinese |
Detected Language | English |
Type | Text, bibliography |
Format | print, ix, 141 leaves : ill. (some col.) ; 30 cm. |
Rights | Use of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/) |
Page generated in 0.0028 seconds