Return to search

FASN mutations in epileptic encephalopathies

L’acide gras synthase, codé par le gène FASN, est une protéine multi-enzyme homodimérique responsable de la lipogenèse de novo à partir de l’acétyl-CoA et du malonyl- CoA. La finalité de cette lipogenèse est la production de l’acide palmitique, un acide gras simple, précurseur des acides gras à très longues chaînes. L’acide palmitique est impliqué dans plusieurs processus biologiques, dont la palmitoylation qui permet d’ancrer diverses protéines à la membrane cellulaire sous-tendant, entre autres, la transmission synaptique. Le rôle de l’acide gras synthase dans le développement embryonnaire est bien établi. En effet, il est exprimé de manière ubiquitaire dans l’embryon, principalement dans les tissus en pleine croissance et soumis à un remodelage, participant ainsi activement au développement cérébral. Par conséquent, des mutations du gène FASN ont été associées à plusieurs maladies, incluant divers types de cancers, les maladies cardiovasculaires, mais également, plus récemment, à certaines maladies du neurodéveloppement, incluant les troubles du spectre de l’autisme. Des données récentes des laboratoires Rossignol et Campeau, au CHU Ste-Justine, suggèrent un lien entre des mutations récessives ou de novo du gène FASN et des formes précoces d’épilepsie avec atteinte cognitive (encéphalopathies épileptogènes).

Nous postulons que les mutations du gène FASN modifient la synthèse de l’acide palmitique et perturbent le développement des réseaux neuronaux, en altérant la migration, le développement morphologique, l’excitabilité et/ou la fonction synaptique de populations neuronales spécifiques, résultant en une hyperexcitabilité neuronale et à l’épilepsie. Pour explorer cette hypothèse, nous avons recueilli les informations cliniques de dix patients porteurs de mutations du gène FASN dans le cadre d’études génomiques en cours au CHU Ste- Justine et à travers le monde. Nous avons également généré un nouveau modèle murin de la maladie, exprimant une mutation retrouvée chez un membre de notre cohorte clinique, que nous avons caractérisé sur les plans histochimique et électrophysiologique.
Nos données suggèrent que les mutations du gène FASN induisent chez l’humain un phénotype clinique de retard global du développement évoluant vers une déficience intellectuelle, s’accompagnant d’un éventail de signes neurologiques (déficit moteur, spasticité, réflexes ostéotendineux vifs, hypotonie et ataxie) et d’un risque accru d’épilepsie. De plus, notre modèle de souris knock-in Fasn.S154N révèle la fonction critique de ce gène dans le développement embryonnaire puisqu’une mutation homozygote entraîne une mortalité in utero. Par ailleurs, les souris porteuses de mutations hétérozygotes survivent et présentent un phénotype clinique rappelant celui observé chez les patients, incluant un comportement
anxieux, une activité épileptique interictale à l’électroencéphalogramme ainsi qu’un abaissement du seuil convulsif lors d’une exposition au pentylenetetrazole (PTZ).

Nous discutons certains mécanismes sous-jacents contribuant potentiellement au développement de l’épilepsie dans cette maladie, incluant une altération de l’activité de l’acide gras synthase au niveau du cortex préfrontal et de l’amygdale, une palmitoylation aberrante des protéines synaptiques, une plus grande vulnérabilité des cellules granulaires du gyrus denté, un dysfonctionnement des cellules souches neurales, une neurogénèse insuffisante, ainsi qu’une altération de la myélinisation et de la croissance axonale impactant la migration des interneurones. Ces mécanismes sont prédits pour altérer l’excitabilité neuronale et la transmission synaptique, perturbant la fonction des circuits. Des études subséquentes permettront d’élucider lesquels de ces divers mécanismes contribuent au phénotype clinique dans notre nouveau modèle murin de la maladie. / Fatty Acid Synthase is a large protein complex encoded by the FASN gene, which is responsible for de novo lipogenesis from acetyl-CoA and malonyl-CoA in the presence of NADPH. The endpoint of this process is the production of palmitic acid. The roles of fatty acid synthase in embryonic development are well established: it is ubiquitously expressed in early embryos, particularly in tissues undergoing active proliferation, outgrowth, and remodelling, and it is thus essential for normal brain development and neuronal function. Consequently, FASN gene mutations have been associated with several neurodevelopmental conditions, including autism spectrum disorders (ASD). Recently, the laboratories of Drs. E. Rossignol and P. Campeau at the CHU Ste-Justine (Université de Montréal), with their international collaborators, have identified 10 patients with neurodevelopmental disorders (i.e., developmental delay, intellectual disability and/or epilepsy) carrying recessive or de novo mutations in the FASN gene, supporting a critical role of FASN in regulating neuronal circuit development and function. However, the mechanisms by which mutations in the FASN gene result in epilepsy are unknown.
We postulate that FASN mutations alter palmitic acid synthesis and disrupt neuronal network development, resulting in network hyperexcitability and epilepsy. In this study, we expand the phenotypic description of patients carrying FASN mutations, while generating a novel mouse model carrying a patient-derived FASN mutation to explore the underlying cellular and network mechanisms.
Our data reveal that FASN mutations, in humans, generate neurodevelopmental disorders characterized by epilepsy, global developmental delay (GDD), intellectual disability (ID), and a broad range of neurological signs (motor deficit, spasticity, hyperreflexia, hypotony, and ataxia). In our knock-in FasnS154N mouse model, homozygous mutations resulted in prenatal lethality. In contrast, heterozygous mutations caused a clinical phenotype reminiscent of the patient phenotype, with anxiety-like behaviors, spontaneous interictal spikes on electroencephalograms (EEG), and a tendency to a reduced PTZ-induced seizure threshold.
We discuss the potential underlying mechanisms, including an altered FAS activity within the prefrontal cortex and the amygdala, aberrant palmitoylation of postsynaptic density proteins, the vulnerability of dentate gyrus granules cell, altered neural stem cells activity and neurogenesis, improper axonal growth and myelination, resulting in altered neuronal excitability and synaptic function, aberrant network activities and epilepsy. These mechanisms will be explored in subsequent studies using our novel animal model.

Identiferoai:union.ndltd.org:umontreal.ca/oai:papyrus.bib.umontreal.ca:1866/25940
Date05 1900
CreatorsTene Tadoum, Samuel Boris
ContributorsRossignol, Elsa
Source SetsUniversité de Montréal
LanguageEnglish
Detected LanguageFrench
Typethesis, thèse
Formatapplication/pdf

Page generated in 0.0083 seconds