Return to search

Functional nano-bio interfaces for cell modulation

Interacting cellular systems with nano-interfaces has shown great promise in promoting differentiation, regeneration, and stimulation. Functionalized nanostructures can serve as topological cues to mimic the extracellular matrix network to support cellular growth. Nanostructures can also generate signals, such as thermal, electrical, and mechanical stimulus, to trigger cellular stimulation. At this stage, the main challenges of applying nanostructures with biological systems are: (1) how to mimic the hierarchical structure of the ECM network in a 3D format and (2) how to improve the efficiency of the nanostructures while decreasing its invasiveness.
To enable functional neuron regeneration after injuries, we have developed a 2D nanoladder scaffold, composed of micron size fibers and nanoscale protrusions, to mimic the ECM in the spinal cord. We have demonstrated that directional guidance during neuronal regeneration is critical for functional reconnection. We further transferred the nanoladder pattern onto biocompatible silk films. We established a self-folding strategy to fabricate 3D silk rolls, which is an even closer system to mimic the ECM of the spinal cord. As demonstrated by in vitro and in vivo experiments, such a scaffold can serve as a grafting bridge to guide axonal regeneration to desired targets for functional reconnection after spinal cord injuries. Benefited from the robust self-folding techniques, silk rolls can also be used for heterogeneous cell culture, providing a potential therapeutic approach for multiple tissue regeneration directions, such as bones, muscles, and tendons.
For achieving neurostimulation, we have developed photoacoustic nanotransducers (PANs), which generate ultrasound upon excitation of NIR II nanosecond laser light. By surface functionalize PAN to bind to neurons, we have achieved an optoacoustic neuron stimulation process with a high spatial and temporal resolution, proved by in-vitro and in-vivo experiments. Such an application can enable non-invasive, optogenetics free and MRI compatible neurostimulation, which provides a new direction of gene-transfection free neuromodulation.
Collectively, in this thesis, we have developed two systems to promote functional regeneration after injuries and stimulate neurons in a minimally invasive manner. By integrating those two functions, a potential new generation of the bioengineered scaffold can be investigated to enable functional and programmable control during the regeneration process.

Identiferoai:union.ndltd.org:bu.edu/oai:open.bu.edu:2144/41113
Date29 May 2020
CreatorsHuang, Yimin
ContributorsYang, Chen
Source SetsBoston University
Languageen_US
Detected LanguageEnglish
TypeThesis/Dissertation
RightsAttribution-NonCommercial-ShareAlike 4.0 International, http://creativecommons.org/licenses/by-nc-sa/4.0/

Page generated in 0.0018 seconds