El presente trabajo realizó el diseño genérico y modular de una red neuronal artificial perceptron multicapa MLP orientada al reconocimiento de dígitos manuscritos en un FPGA mediante el lenguaje de descripción de hardware VHDL. El entrenamiento de esta red se realizó externo al chip, en software, mediante la herramienta de Redes Neuronales del Matlab 7.1 y utilizando como imágenes de entrenamiento la base de datos modificada del NIST (MNIST database). Con esto, se logra que el FPGA se dedique solamente a la tarea de reconocimiento, mas no al aprendizaje de la red. Si se quisiera que se cumpla con otra aplicación, bastará con su reentrenamiento en software para obtener los parámetros necesarios e introducirlos en su descripción y configuración. / Tesis
Identifer | oai:union.ndltd.org:PUCP/oai:tesis.pucp.edu.pe:123456789/231 |
Date | 09 May 2011 |
Creators | Monge Osorio, Manuel Alejandro |
Publisher | Pontificia Universidad Católica del Perú |
Source Sets | Pontificia Universidad Católica del Perú |
Language | Spanish |
Detected Language | Spanish |
Type | info:eu-repo/semantics/bachelorThesis |
Format | application/pdf |
Source | Pontificia Universidad Católica del Perú, Repositorio de Tesis - PUCP |
Rights | Atribución-NoComercial-SinDerivadas 2.5 Perú, info:eu-repo/semantics/openAccess, http://creativecommons.org/licenses/by-nc-nd/2.5/pe/ |
Page generated in 0.0022 seconds