Return to search

NeuroTorch : une librairie Python dédiée à l'apprentissage automatique dans le domaine des neurosciences

Titre de l'écran-titre (visionné le 29 novembre 2023) / L'apprentissage automatique a considérablement progressé dans le domaine de la recherche en neurosciences, mais son application pose des défis en raison des différences entre les principes biologiques du cerveau et les méthodes traditionnelles d'apprentissage automatique. Dans ce contexte, le projet présenté propose NeuroTorch, un pipeline convivial d'apprentissage automatique spécialement conçu pour les neuroscientifiques, afin de relever ces défis. Les objectifs clés de ce projet sont de fournir une librairie d'apprentissage profond adaptée aux neurosciences computationnelles, d'implémenter l'algorithme eligibility trace forward propagation (e-prop) pour sa plausibilité biologique, de comparer les réseaux de neurones continus et à impulsions en termes de résilience, et d'intégrer un pipeline d'apprentissage par renforcement. Le projet se divise en plusieurs parties. Tout d'abord, la théorie des dynamiques neuronales, des algorithmes d'optimisation et des fonctions de transformation d'espaces sera développée. Ensuite, l'attention sera portée sur la conception du pipeline NeuroTorch, incluant l'implémentation de l'algorithme e-prop. Les résultats de la prédiction de séries temporelles d'activité neuronale chez le poisson-zèbre seront présentés, ainsi que des observations sur la résilience à l'ablation des réseaux obtenus. Enfin, une section sera consacrée à l'exploration du pipeline d'apprentissage par renforcement de NeuroTorch et à la validation de son architecture dans l'environnement LunarLander de Gym. En résumé, les modèles à impulsions de NeuroTorch ont atteint des précisions de 96,37%, 85,58% et 74,16% respectivement sur les ensembles de validation MNIST, Fashion-MNIST et Heidelberg. De plus, les dynamiques leaky-integrate-and-fire with explicit synaptic current - low pass filter (SpyLIF-LPF) et Wilson-Cowan ont été entraînées avec succès à l'aide de l'algorithme e-prop sur des données neuronales expérimentales du ventral habenula du poisson-zèbre, obtenant respectivement des valeurs de pVar de 0,97 et 0,96. Les résultats concernant la résilience indiquent que l'application de la loi de Dale améliore la robustesse des modèles en termes d'ablation hiérarchique. Enfin, grâce au pipeline d'apprentissage par renforcement de NeuroTorch, différents types d'agents inspirés des neurosciences ont atteint le critère de réussite dans l'environnement LunarLander de Gym. Ces résultats soulignent la pertinence et l'efficacité de NeuroTorch pour les applications en neurosciences computationnelles. / Machine learning has made significant advancements in neuroscience research, but its application presents challenges due to the differences between the biological principles of the brain and traditional machine learning methods. In this context, the presented project proposes NeuroTorch, a comprehensive machine learning pipeline specifically designed for neuroscientists to address these challenges. The key objectives of this project are to provide a deep learning library tailored to computational neuroscience, implement the eligibility trace forward propagation (e-prop) algorithm for biological plausibility, compare continuous and spiking neural networks in terms of resilience, and integrate a reinforcement learning pipeline. The project is divided into several parts. Firstly, the theory of neural dynamics, optimization algorithms, and space transformation functions will be developed. Next focus will be on the design of the NeuroTorch pipeline, including the implementation of the e-prop algorithm. Results of predicting a time series of neuronal activity in zebrafish will be presented, along with observations on the resilience to network ablations obtained. Finally, a section will be dedicated to exploring the NeuroTorch reinforcement learning pipeline and validating its architecture in the LunarLander environment of Gym. In summary, NeuroTorch spiking models achieved accuracies of 96.37%, 85.58%, and 74.16% on the MNIST, Fashion-MNIST, and Heidelberg validation sets, respectively. Furthermore, the leaky-integrate-and-fire with explicit synaptic current - low pass filter (SpyLIF-LPF) and Wilson-Cowan dynamics were successfully trained using the e-prop algorithm on experimental neuronal data from the ventral habenula of zebrafish, achieving pVar values of 0.97 and 0.96, respectively. Results regarding resilience indicate that the application of the Dale law improves the robustness of models in terms of hierarchical ablation. Lastly, through the NeuroTorch reinforcement learning pipeline, different types of neuroscience-inspired agents successfully met the success criterion in the Gym's LunarLander environment. These results highlight the relevance and effectiveness of NeuroTorch for applications in computational neuroscience.

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/130323
Date25 March 2024
CreatorsGince, Jérémie
ContributorsHardy, Simon, Desrosiers, Patrick
Source SetsUniversité Laval
LanguageFrench
Detected LanguageFrench
TypeCOAR1_1::Texte::Thèse::Mémoire de maîtrise
Format1 ressource en ligne (x, 101 pages), application/pdf
Rightshttp://purl.org/coar/access_right/c_abf2

Page generated in 0.0022 seconds