Electrophysiological studies of myenteric neurons in the guinea-pig antrum suggest that different neuroactive compounds are involved in synaptic transmission. It is not known what neurotransmitters and neuropeptides are present and to what extent they colocalize. Immunohistochemical stainings were performed on whole-mount preparations of the guinea-pig antrum. Immunoreactivity for neuron-specific enolase was used as a general marker and was set at 100%. There was no overlap between cholinergic and nitrergic neurons, resulting in two separate subpopulations. The presence of choline acetyltransferase immunoreactivity was used to identify the cholinergic subset, which accounted for 56% of the cells. Immunoreactivity for nitric oxide synthase, on the other hand, was displayed in 40.7% of the neurons. Substance-P immunoreactivity was present in 37.4% of the cells and vasoactive intestinal peptide and neuropeptide Y in 21.7% and 28.6%, respectively. Small subsets of neurons had immunoreactivity for serotonin (3.9%), calretinin (6.8%) and calbindin (0.5%). Colocalization studies revealed several subgroups of neurons, containing one or more of the screened markers. Though some similarity is found in the chemical coding of the antrum compared to that of the small intestine and the corpus, remarkable differences can be seen in the occurrence of some subpopulations. Cholinergic neurons are not as predominant as in other parts of the gut, serotonin presence is doubled and some vasointestinal-peptide-positive neurons express substance P. These differences might reflect the highly specialized function of the antrum; however, the exact role of these classes remains to be established.
Identifer | oai:union.ndltd.org:ETSU/oai:dc.etsu.edu:etsu-works-14343 |
Date | 17 July 1999 |
Creators | Vanden Berghe, P., Coulie, B., Tack, J., Mawe, G. M., Schemann, M., Janssens, J. |
Publisher | Digital Commons @ East Tennessee State University |
Source Sets | East Tennessee State University |
Detected Language | English |
Type | text |
Source | ETSU Faculty Works |
Page generated in 0.0016 seconds