Return to search

Quantifying the Trenches: Machine Learning Applied to NFL Offensive Lineman Valuation

There are 32 teams in the National Football League all competing to be the best by creating the strongest roster possible. The problem of evaluating talent has created extreme competition between teams in the form of a rookie draft and a fiercely competitive veteran free agent market. The difficulty with player evaluation is due to the noise associated with measuring a particular player’s value. The intent of this paper is to create an algorithm for identifying the inefficiencies in pricing in these player markets. In particular, this paper focuses on the veteran free agent market for offensive linemen in the NFL. NFL offensive linemen are difficult to evaluate empirically because of the significant amount of noise present due to an inability to measure a lineman’s performance directly. The algorithm first uses a machine learning technique, k-means cluster analysis, to generate a comparative set of offensive lineman. Then using that set of comparable offensive linemen, the algorithm flags any lineman that vary significantly in earnings from their peers. It is in this fashion that the algorithm provides relative valuations for particular offensive lineman.

Identiferoai:union.ndltd.org:CLAREMONT/oai:scholarship.claremont.edu:cmc_theses-2634
Date01 January 2017
CreatorsPyne, Sean
PublisherScholarship @ Claremont
Source SetsClaremont Colleges
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceCMC Senior Theses
Rights© 2017 Sean Pyne, default

Page generated in 0.0018 seconds