Return to search

Modeling of thermal and mechanical effects during friction stir processing of nickel-aluminum bronze

Approved for Public Release; Distribution is Unlimited / Friction Stir Processing (FSP), although relatively simple in concept, results in an extremely complex thermomechanical treatment to the material being processed. Previous studies of FSP have shown that the process results in extremely high strain, strain rates and temperatures as well as gradients in strain, strain rate and temperature within a small volume of material. This thesis will study the effect of varying FSP parameters during the processing of Nickel-Aluminum-Bronze (NAB) propeller material. The modeling program CTH was used to define the relationship between tool rotation speed, traversing speed and the total power input to the material. The tool's mechanical power and the power generated by deformation of the material has been investigated. The modeling experiments were designed to gain an understanding of the relationship of process parameters, microstructure and mechanical properties, and to enhance our understanding of the flow patterns and thermal histories of the NAB material in the stir zone. / Lieutenant, United States Navy

Identiferoai:union.ndltd.org:nps.edu/oai:calhoun.nps.edu:10945/1403
Date09 1900
CreatorsJamison, Jay Dee
ContributorsMcNelley, Terry R., Naval Postgraduate School (U.S.)., Mechanical and Astronautical Engineering
PublisherMonterey, California. Naval Postgraduate School
Source SetsNaval Postgraduate School
Detected LanguageEnglish
TypeThesis
Formatxvi, 153 p. : ill. (chiefly col.) ;, application/pdf
RightsThis publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.

Page generated in 0.0021 seconds