Return to search

Laser deposition of titanium and nickel intermetallic coatings on titanium for aerospace applications.

M. Tech. Metallurgical Engineering / Titanium alloys exhibit poor tribological characteristic which include abrasion resistance, metal to metal wear resistance and solid particle erosion and cavitation due to low surface hardness and high coefficient of friction. These poor properties have limited the application of titanium alloys as engineering tribological components, tools and parts that operate in severe wear and friction conditions. Laser processing defects such as pores, cracks and segregation pose a huge threat to the quality and the microstructure of the deposited layer. Defects caused by the parameters lead to severe wear and corrosion occurrence, hence, precise control of the parameters are crucial and it depends on the properties of the material used. It is postulated that Nickel Titanium (NiTi) is a promising candidate as reinforcement matrix material for wear resistant alloy. The wear resistance would be further enhanced if NiTi is in-situ incorporated onto titanium matrix by laser cladding to yield hard intermetallic phases. The main goal of the study is to develop corrosive-wear resistant thin surface coatings on Ti-6Al-4V alloy for automotive and aerospace applications by depositing Titanium and Nickel elemental powders to form in-situ NiTi intermetallic using laser cladding technique.

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:tut/oai:encore.tut.ac.za:d1001525
Date January 2014
CreatorsMokgalaka, Mokgadi Nomsa.
Source SetsSouth African National ETD Portal
LanguageEnglish
Detected LanguageEnglish
TypeText
FormatPDF

Page generated in 0.0026 seconds