Nesta dissertação, tratamos do estudo das bifurcações de um modelo bi-dimensional de presa-predador, que estende e aperfeiçoa o sistema de Lotka-Volterra. Tal modelo apresenta cinco parâmetros e uma função resposta não monotônica do tipo Holling IV: $$ \\left\\{\\begin \\dot=x(1-\\lambda x-\\frac{\\alpha x^2+\\beta x +1})\\\\ \\dot=y(-\\delta-\\mu y+\\frac{\\alpha x^2+\\beta x +1}) \\end ight. $$ Estudamos as bifurcações do tipo sela-nó, Hopf, transcrítica, Bogdanov-Takens e Bogdanov-Takens degenerada. O método dos centros organizadores é usado para estudar o comportamento qualitativo do diagrama de bifurcação. / In this work are studied the bifurcations of a bi-dimensional predator-prey model, which extends and improves the Volterra-Lotka system. This model has five parameters and a non-monotonic response function of Holling IV type: $$ \\left\\{\\begin \\dot=x(1-\\lambda x-\\frac{\\alpha x^2+\\beta x +1})\\\\ \\dot=y(-\\delta-\\mu y+\\frac{\\alpha x^2+\\beta x +1}) \\end ight. $$ They studied the sadle-node, Hopf, transcritic, Bogdanov-Takens and degenerate Bogdanov-Takens bifurcations. The method of organising centers is used to study the qualitative behavior of the bifurcation diagram.
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-18082010-122313 |
Date | 16 July 2010 |
Creators | Andre Ricardo Belotto da Silva |
Contributors | Jorge Manuel Sotomayor Tello, Ronaldo Alves Garcia, Pedro Antonio Santoro Salomão |
Publisher | Universidade de São Paulo, Matemática Aplicada, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0032 seconds